传送门: Balance
题目大意:给你一根杠杆,轴在中心标记位0,中心左边,从左到右标记-15,-14,…,-1,中心右端,1,2,3,…,15,表示到中心的距离。现在给你c个挂钩,g个砝码。告诉你挂钩位置和每个砝码的重量,要求用完所有砝码。问:使得杠杆平衡的方案数是多少?
思路:01背包问题的变形题。
在01背包中dp[i][j]表示放入第i个物品背包体积为j的最大价值,而在这里dp[i][j]表示放入第i个砝码(前面i-1个砝码都已放入)平衡度为j的最大方案数。平衡度指的是balance=左臂长(负数)✖砝码重量+右臂长(正数)✖砝码重量,显然当balance=0时杠杆平衡。
对dp[i][j]来说,有两种方案,一种是放,另一种是不放。但在这道题只能放,因为题目中已经明确说了砝码要全部放完!那么放的情况就有很多种了,我们的砝码可以放入任意挂钩的位置,所以要把这些方案数全部加起来,即状态转移方程为:dp[i][j]+=dp[i-1][j-c[k]*g[i]]。
这道题还有一点要注意,平衡度的范围是-7500~7500,但数组下标不能为负数!所以要加个7500,平衡度为7500时杠杆平衡。答案即为dp[n_c][7500]。
code:
#include<iostream>
#include<stdio.h>
using namespace std;
int dp[22][15000],c[22],g[22];
int main()
{
int n_c,n_g;
cin>>n_c>>n_g;
for(int i=1;i<=n_c;i++) scanf("%d",&c[i]);
for(int i=1;i<=n_g;i++) scanf("%d",&g[i]);
dp[0][7500]=1;//杠杆一开始也算平衡
for(int i=1;i<=n_g;i++)
{
for(int j=0;j<=15000;j++)
{
for(int k=1;k<=n_c;k++)
{
if(j>=c[k]*g[i])
dp[i][j]+=dp[i-1][j-c[k]*g[i]];
}
}
}
cout<<dp[n_g][7500];
return 0;
}