备战2023蓝桥国赛-重新理解bellman-ford

备战2023蓝桥国赛-重新理解bellman-ford

题目描述:
在这里插入图片描述
在这里插入图片描述
解析:由于边权可能为负数,会发现这样是可能会存在负权回路的,如果用dijkstra写的话是会死循环的,所以我们不能用它,得用bellman-ford算法。
belllman-ford的原理是:
对限制边数进行遍历,每次遍历时都会记录上次dist的状态,用backup来表示,然后再次遍历每条边,用backup来更新dist数组,这样循环往复就能避免自环带来的影响,最终解决这个问题。
对于代码实现的解释:
这里要注意判断条件不再是是否等于0x3f3f3f3f了,因为边的值可能为负数,所以即使不再等于0x3f3f3f3f也可能是不存在的。然后我们算算dist[i]最多等于多少,最多为500✖10000,也就是5e6,所以判断条件就为是否大于5e6,如果大于就输出impossible,反之就输出dist[n]。
代码:

#include<bits/stdc++.h>
using namespace std;
const int N=510,M=1e4+10;
struct node{
	int a,b,w;
}edges[M];
int dist[N],backup[N],n,m,k;
void bellman_ford()
{
	memset(dist,0x3f,sizeof(dist));
	dist[1]=0;
	for(int i=0;i<k;i++)
	{
		memcpy(backup,dist,sizeof(dist));
		
		for(int j=1;j<=m;j++)
		{
			int a=edges[j].a,b=edges[j].b,w=edges[j].w;
			dist[b]=min(dist[b],backup[a]+w);
		}
	}
}
int main()
{
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=m;i++)
	{
		int a,b,w;
		scanf("%d%d%d",&a,&b,&w);
		edges[i]={a,b,w}; 
	}
	bellman_ford();
	if(dist[n]>5e6) printf("impossible");
	else printf("%d",dist[n]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值