备战2023蓝桥国赛-重新理解bellman-ford
题目描述:
解析:由于边权可能为负数,会发现这样是可能会存在负权回路的,如果用dijkstra写的话是会死循环的,所以我们不能用它,得用bellman-ford算法。
belllman-ford的原理是:
对限制边数进行遍历,每次遍历时都会记录上次dist的状态,用backup来表示,然后再次遍历每条边,用backup来更新dist数组,这样循环往复就能避免自环带来的影响,最终解决这个问题。
对于代码实现的解释:
这里要注意判断条件不再是是否等于0x3f3f3f3f了,因为边的值可能为负数,所以即使不再等于0x3f3f3f3f也可能是不存在的。然后我们算算dist[i]最多等于多少,最多为500✖10000,也就是5e6,所以判断条件就为是否大于5e6,如果大于就输出impossible,反之就输出dist[n]。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=510,M=1e4+10;
struct node{
int a,b,w;
}edges[M];
int dist[N],backup[N],n,m,k;
void bellman_ford()
{
memset(dist,0x3f,sizeof(dist));
dist[1]=0;
for(int i=0;i<k;i++)
{
memcpy(backup,dist,sizeof(dist));
for(int j=1;j<=m;j++)
{
int a=edges[j].a,b=edges[j].b,w=edges[j].w;
dist[b]=min(dist[b],backup[a]+w);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
edges[i]={a,b,w};
}
bellman_ford();
if(dist[n]>5e6) printf("impossible");
else printf("%d",dist[n]);
return 0;
}