很明显要求一个二分图。先构图,然后用精典的点染色的方法,求出二分图中两个图的节点数量
因为整个图中有很多个通块,每个通块都做一次二分图
合并的时候,把每个二分图中节点多的那部分的数量累加,就得到了a答案
那么b就是总数减去a
这题本身不难,但是数据非常贱,题目要求每组中必须有一个人,且m可能为0
所以,要进行两个特判
n<=1时,不可能每组至少1人,直接输出Poor wyh
m==0时,没有任何限制,但是b组至少要一个人,所以输出n-1 1(有无数人在这里wa了貌似kuangbin也是)
然后还可能爆栈(虽然最终测评里没有,,还好没这样出数据)
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<functional>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
#pragma comment(linker,"/STACK:102400000,102400000")
const int MX = 100000 + 5;
const int INF = 0x3f3f3f3f;
int vis[MX];
vector<int>G[MX];
bool DFS(int u, int c, int &a, int &b) {
b++;
if(c) a++;
vis[u] = c;
for(int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if(vis[v] == c) return false;
if(vis[v] == -1 && !DFS(v, c ^ 1, a, b)) return false;
}
return true;
}
int main() {
int T, n, m;
scanf("%d", &T);
while(T--) {
memset(vis, -1, sizeof(vis));
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) {
G[i].clear();
}
for(int i = 1; i <= m; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
if(n <= 1) {
printf("Poor wyh\n");
continue;
}
if(m == 0) {
printf("%d 1\n", n - 1);
continue;
}
bool sign = true;
int Max = 0;
for(int i = 1; i <= n; i++) {
int a = 0, b = 0;
if(vis[i] == -1) {
if(!DFS(i, 0, a, b)) {
sign = false;
break;
}
Max += max(a, b - a);
}
}
if(!sign) printf("Poor wyh\n");
else {
printf("%d %d\n", Max, n - Max);
}
}
return 0;
}