[KMP][后缀数组] poj2406 Power Strings

Description

Given two strings a and b we define a*b to be their concatenation. For example, if a = “abc” and b = “def” then a*b = “abcdef”. If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = “” (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest n such that s = a^n for some string a.

题意大概就是给你一个字符串,然后让你找它的循环节。输出最小循环节的次数。字符串的长度是e6。

这个题目可以用KMP的next数组的性质搞,或者直接就是后缀数组套上去。

1.先讲KMP的next的做法:
令next[i]= x 。字符串的长度为len。则表示从这个串从0 x ix+1 i 是一样的。
这是一个很好的性质。那么如果说循环节是x的话,那么对于所有的 kx<len,(kN) 必须有 kxnext[kx]=x
而我们要求循环节最多的,那么就意味着 x 越小越好。一旦遇到合法的,就直接输出就好了。
代码如下:
最坏的复杂度是O(nlogn),实际上这是一个很松的上界。

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1000000

int nxt[MAXN+10];
int s[MAXN+10];
char t[MAXN+10];
void getNext(char *t,int len)
{
    nxt[0]=-1;
    int now=-1;
    for(int i=1; i<=len; i++) {
        while(now>=0&&t[i]!=t[now+1])
            now=nxt[now];
        nxt[i]=now+1;
        now++;
    }
}

int solve(int m)
{
    for(int i=1; i<=m; i++) {
        if(m%i==0) {
            bool ok=true;
            nxt[i]=0;
            for(int j=i; j<=m&&ok; j+=i)
                if(j-nxt[j]!=i)
                    ok=false;
            if(ok)
                return i;
        }
    }
    return m;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(1) {
        scanf("%s",t+1);
        if(t[1]=='.')
            break;
        int m=strlen(t+1);
        getNext(t,m);
        int ans=solve(m);
        printf("%d\n",m/ans);
    }
    return 0;
}

后缀数组的做法:
我们可以得到如果循环节为 x ,则必须要有len0modx。再通过height数组和rank数组的一些性质。得到: rank[0]rank[x]=1 。最后就是 heigth[rank[0]]=lenx 。最后的最后,贴个模板,然后暴力对于 1 len扫一遍就可以了。

在此感谢模板的主人kuangbin。这个题目 nlogn 的过不了,只能用DC3。而DC3好长。所以还是写KMP那个方法就好了吧。
后缀数组的代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 1000010;
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
int wa[MAXN*3],wb[MAXN*3],wv[MAXN*3],wss[MAXN*3];
int c0(int *r,int a,int b)
{
    return r[a] == r[b] && r[a+1] == r[b+1] && r[a+2] == r[b+2];
}
int c12(int k,int *r,int a,int b)
{
    if(k == 2)   return r[a] < r[b] || ( r[a] == r[b] && c12(1,r,a+1,b+1) );
    else return r[a] < r[b] || ( r[a] == r[b] && wv[a+1] < wv[b+1] );
}
void sort(int *r,int *a,int *b,int n,int m)
{
    int i;
    for(i = 0; i < n; i++)wv[i] = r[a[i]];
    for(i = 0; i < m; i++)wss[i] = 0;
    for(i = 0; i < n; i++)wss[wv[i]]++;
    for(i = 1; i < m; i++)wss[i] += wss[i-1];
    for(i = n-1; i >= 0; i--)   b[--wss[wv[i]]] = a[i];
}
void dc3(int *r,int *sa,int n,int m)
{
    int i, j;
    int *rn = r + n;
    int *san = sa + n, ta = 0, tb = (n+1)/3, tbc = 0, p;
    r[n] = r[n+1] = 0;
    for(i = 0; i < n; i++)if(i %3 != 0)wa[tbc++] = i;
    sort(r + 2, wa, wb, tbc, m);
    sort(r + 1, wb, wa, tbc, m);
    sort(r, wa, wb, tbc, m);
    for(p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)   rn[F(wb[i])] = c0(r, wb[i-1], wb[i]) ? p - 1 : p++;
    if(p < tbc)dc3(rn,san,tbc,p);
    else for(i = 0; i < tbc; i++)san[rn[i]] = i;
    for(i = 0; i < tbc; i++) if(san[i] < tb)wb[ta++] = san[i] * 3;
    if(n % 3 == 1)wb[ta++] = n - 1;
    sort(r, wb, wa, ta, m);

    for(i = 0; i < tbc; i++)wv[wb[i] = G(san[i])] = i;
    for(i = 0, j = 0, p = 0; i < ta && j < tbc; p++)   sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
    for(; i < ta; p++)sa[p] = wa[i++];
    for(; j < tbc; p++)sa[p] = wb[j++];
}
void da(int str[],int sa[],int rank[],int height[],int n,int m=256)
{
    for(int i = n; i < n*3; i++)   str[i] = 0;
    dc3(str, sa, n+1, m);
    int i,j,k = 0;
    for(i = 0; i <= n; i++)rank[sa[i]] = i;
    for(i = 0; i < n; i++)  {
        if(k) k--;
        j = sa[rank[i]-1];
        while(str[i+k] == str[j+k]) k++;
        height[rank[i]] = k;
    }
}
char s[MAXN*3];
int sa[MAXN*3];
int Rank[MAXN*3];
int height[MAXN*3];
int ss[MAXN*3];
void solve(int len)
{
    for(int i=1;i<=len;i++)
    {
        if(len%i)
            continue;
        if(Rank[i]+1!=Rank[0])
            continue;
        if(height[Rank[0]]!=len-i)
            continue;
        printf("%d\n",len/i);
        return ;
    }
    printf("1\n");
    return ;
}
int main (void)
{
    while(scanf("%s",s)!=EOF) {
        if(s[0]=='.')
            break;
        int len=strlen(s);
        for(int i=0;i<len;i++)
            ss[i]=s[i]-'a'+1;
        ss[len]=0;
        da(ss,sa,Rank,height,len+1);
        solve(len);
    }
    return 0;
}
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值