零度根轨迹的推导

在这里插入图片描述
根轨迹有很多种,常见有180度根轨迹0度根轨迹参数根轨迹
0度和180度是对比记忆的,记住一个另一个也记住了。
比较常见的是180度根轨迹,而画根轨迹的目的是通过图像来反应闭环传递函数的一些根的性质从而代表了这个系统的一些性能指标。

从根轨迹的定义了解到,它就是闭环函数的分母为0的时候,而单位负反馈的分母就是分子加分母,也就是A+B=0的形式,转换成A/B=-1,前面的系数是正的,那如果是正反馈,系数负号怎么办呢?该如何分析呢?
注: 闭环特征方程的分子加减分母是这样推导的:假设前向传递函数为 G ( s ) G(s) G(s),如果为单位反馈,那么反馈的部分函数为 H ( s ) = + 1 H(s)=+1 H(s)=+1或者 H ( s ) = − 1 H(s)=-1 H(s)=1,闭环特征方程为 D ( s ) D(s) D(s),那么开环传递函数 W k ( s ) W_{k}(s) Wk(s)闭环传递函数为 W ( s ) W(s) W(s)
在这里插入图片描述

W k ( s ) = G ( s ) ∗ H ( s ) \begin{aligned} W_{k}(s)= { G(s) }* { H(s)} \end{aligned} Wk(s)=G(s)H(s)
W ( s ) = G ( s ) 1 + W k = G ( s ) 1 + G ( s ) ∗ H ( s ) \begin{aligned} W(s)= \frac{ G(s) } { 1+W_{k}} =\frac{ G(s) } { 1+{ G(s) }* { H(s)}} \\ \end{aligned} W(s)=1+WkG(s)=1+G(s)H(s)G(s)
D ( s ) = 1 + G ( s ) ∗ H ( s ) = 0 \begin{aligned} {D}(s) = 1+{ G(s) }* { H(s)} = 0 \end{aligned} D(s)=1+G(s)H(s)=0
那么将 H ( s ) = + 1 H(s)=+1 H(s)=+1或者 H ( s ) = − 1 H(s)=-1 H(s)=1两种情况带入后,以 H ( s ) = − 1 H(s)=-1 H(s)=1为例,那么代入第一个公式可以得到
W k ( s ) = − G ( s ) \begin{aligned} W_{k}(s)= { - G(s) } \end{aligned} Wk(s)=G(s)
代入第三个公式可以得到:
D ( s ) = 1 − G ( s ) = 0 , 即 G ( s ) = 1 , 也 就 是 W k ( s ) = − 1 \begin{aligned} {D}(s) = 1-{ G(s) } = 0,即G(s)=1,也就是W_{k}(s)= -1 \end{aligned} D(s)=1G(s)=0G(s)=1Wk(s)=1
那么如果我们令:
W k ( s ) = A B = − 1 \begin{aligned} W_{k}(s)=\frac{A}{B}= -1 \end{aligned} Wk(s)=BA=1
那么闭环传递函数
D ( s ) = 1 − G ( s ) = 1 + W k ( s ) = 1 + − A B = B − A B = 0 , 即 A − B = 0 \begin{aligned} {D}(s) = 1-{ G(s) } = 1+{ W_{k}(s) }=1+\frac{-A}{B}=\frac{B-A}{B}=0,即A-B=0 \end{aligned} D(s)=1G(s)=1+Wk(s)=1+BA=BBA=0AB=0
因此正反馈的特征方程为0等价于分子减分母等于0,同理易推出负反馈的特征方程等价于分子加分母为0。
因此可以总结出来根轨迹的其中两种情况的标准形式,一种是正反馈的根轨迹形式,一种是负反馈。 A 、 B A、B AB分别表示分子和分母包含 s s s的多项式,如下所示:

  • 负反馈

W k ( s ) = K ∗ A B = − 1 , K > 0 \begin{aligned} W_{k}(s)=K*\frac{A}{B}= -1,K>0 \end{aligned} Wk(s)=KBA=1,K>0

  • 正反馈
    W k ( s ) = K ∗ A B = 1 , K > 0 \begin{aligned} W_{k}(s)=K*\frac{A}{B}= 1,K>0 \end{aligned} Wk(s)=KBA=1,K>0
    因此,下面的任务就是如何将含有 K K K的未知数,通过一定的转换,变成负反馈或者正反馈的形式。

一、三种情况

0. 预处理

这里比较重要的一点,在处理根轨迹的问题时候,需要变成根轨迹的根轨迹增益 K K K,即将将每一个 s s s的因式中前面的系数化为+1,(类似地,频域法中的增益 K K K是将后面加的常数化为+1)如 W k ( s ) = − 3 K ( 2 − s ) 2 s − 4 W_{k}(s)= \frac{ {-3K(2-s)} } { {2s-4} } Wk(s)=2s43K(2s) 需要做两个处理,一是将分子的负号拿掉,由于系数是1,处理完毕,二是将分母的系数变成1,由于已经是正数了,处理完毕。
W k ( s ) = − 3 K ( 2 − s ) 2 s − 4 = 3 K ( s − 2 ) 2 s − 4 = 1.5 K ( s − 2 ) s − 2 \begin{aligned} W_{k}(s) = \frac{ {-3K(2-s)} } { {2s-4} }=\frac{ {3K(s-2)} } { {2s-4} }=\frac{ {1.5K(s-2)} } { {s-2} } \end{aligned} Wk(s)=2s43K(2s)=2s43K(s2)=s21.5K(s2)

1. 负反馈,K>0,系数<0

  • 画出单位负反馈,传递函数为 W k ( s ) = − 3 K ( s + 2 ) s W_{k}(s)= \frac{ {-3K(s+2)} } { {s} } Wk(s)=s3K(s+2) 的根轨迹情况:

由于前面的系数-3是属于小于0的情况,一般题目会告诉你这个是单位负反馈,有的题目会省略这一句,因此计算它的闭环传递函数分子+分母,可以得到它的特征方程。
D ( s ) = − 3 K ( s + 2 ) + s = 0 \begin{aligned} {D}(s) ={ {-3K(s+2)} }+ { {s} } = 0 \end{aligned} D(s)=3K(s+2)+s=0
经过移项后,可以变成如下形式:
3 K ( s + 2 ) s = 1 \begin{aligned} \frac{ {3K(s+2)} } { {s} }=1 \end{aligned} s3K(s+2)=1
就可以得到标准零度根轨迹的形式,满足K>0即等效成了零度根轨迹的标准形式。

2. 负反馈,K<0,系数>0

  • 画出单位负反馈,传递函数为 W k ( s ) = 3 K ( s + 2 ) s W_{k}(s) = \frac{ {3K(s+2)} } { {s} } Wk(s)=s3K(s+2) 的根轨迹情况:

同样,由于它是单位负反馈,分子+分母就可以。
D ( s ) = 3 K ( s + 2 ) + s = 0 \begin{aligned} {D}(s) ={ {3K(s+2)} }+ { {s} } = 0 \end{aligned} D(s)=3K(s+2)+s=0
经过移项后,可以变成如下形式:
− 3 K ( s + 2 ) s = 1 \begin{aligned} \frac{ {-3K(s+2)} } { {s} }=1 \end{aligned} s3K(s+2)=1
由于K<0,那么-K>0,等效成了零度根轨迹的标准形式。

3. 正反馈,K>0,系数>0,

  • 画出单位正反馈,传递函数为 W k ( s ) = 3 K ( s + 2 ) s W_{k}(s) = \frac{ {3K(s+2)} } { {s} } Wk(s)=s3K(s+2) 的根轨迹情况:

由于是正反馈那么我们可以分析得到它的闭环传递函数是分子-分母,这里注意一下,那么同样也符合它的标准形式。
D ( s ) = 3 K ( s + 2 ) − s = 0 \begin{aligned} {D}(s) ={ {3K(s+2)} }- { {s} } = 0 \end{aligned} D(s)=3K(s+2)s=0
经过移项后,可以变成如下形式:
3 K ( s + 2 ) s = 1 \begin{aligned} \frac{ {3K(s+2)} } { {s} }=1 \end{aligned} s3K(s+2)=1
由于K>0,等效成了零度根轨迹的标准形式。
也就是说,不管用什么方法本质还是闭环传递函数的思想,引申一点,如零极点对消问题,也是一种闭环传递函数的思路,先计算闭环看看怎么样。

4. 负反馈,K未知,系数>0,

  • 画出单位负反馈,传递函数为 W k ( s ) = 3 K ( s + 2 ) s W_{k}(s) = \frac{ {3K(s+2)} } { {s} } Wk(s)=s3K(s+2) 的根轨迹情况:

这种情况就需要讨论两种情况,分别是K<0K>0
K>0就是最常见的形式了,画180度根轨迹即可。
K<0是第二种情况,因此需要画0度根轨迹。

二、规则

在画根轨迹的时候,规则十分重要,要对比着去记忆零度根轨迹180度根轨迹的法则。

  • 右侧零极个数之和为偶数是零度,奇数是180度;
  • 渐近线与实轴正方向的夹角为 2 k π n − m , k = 0 , 1... \frac {2k\pi}{n-m},k=0,1... nm2kπ,k=0,1...,而180度根轨迹为 ( 2 k + 1 ) π n − m , k = 0 , 1... \frac {(2k+1)\pi}{n-m},k=0,1... nm(2k+1)π,k=0,1...

等情况。

三、参数根轨迹

再说一说参数根轨迹,或者叫广义根轨迹,先求出来特征方程,然后根据参数重新构造形式。由于是单位负反馈,那么就是分子+分母,重新构造的时候,将参数部分提出来如 a s + a as+a as+a就变成 a ( s + 1 ) a(s+1) a(s+1),有参数的提出来后全放在分子上,就当作了参数, a a a也就是传统意义上的 K K K,即广义的增益

具体步骤如下:
1.根据反馈形式,确定特征方程 D ( s ) D(s) D(s)是分子加分母,还是分子减分母
2.根据参数进行合并 D ( s ) D(s) D(s)方程中的同类项,即如果参数是 a a a,经过化简比如变成 a ( s 2 + s + 1 ) + 5 s + 6 = 0 a(s^2+s+1)+5s+6=0 a(s2+s+1)+5s+6=0
3.这样类似于分子加分母的形式,假设是负反馈,那么可以把含有 a a a的部分当成分子,剩下部分当成分母,即
a ( s 2 + s + 1 ) 5 s + 6 = − 1 \begin{aligned} \frac {a(s^2+s+1)}{5s+6}=-1 \end{aligned} 5s+6a(s2+s+1)=1
4.如果你把 a a a 当成 K K K,其实就和上面的标准根轨迹形式一致了,那么就画根轨迹就ok.
5.需要讨论 a a a 的范围, 一些题目没有给出 a a a的范围,类似于第4种情况画两种情况,否则如果给出 a a a的范围就对应画正反馈或者负反馈即可。
6.如果有多个参数的情况,根据不同的参数作为根轨迹增益,可以画出多个根轨迹曲线,但最后判断系统的稳定性是一致的。
在这里插入图片描述
同理,抛砖引玉一下,奈奎斯特也能用类似的方法,如果这个特征方程过于复杂,先通过转换传递函数的形式,进行化简合并同类项,能构造出新的传递函数来进行判断它的稳定性。

  • 6
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值