这道题我们可以通过记忆化搜索搜索从第一个第i个数和第二行第j个数开始的最长相同序列;
递归思想如下
这个思路是从最大值开始的,从1开始亦同理(我就是从1开始的)
下面直接附上代码了,输出问题会在代码中解释清楚
#include <iostream>
#include <string.h>
#include <cstring>
using namespace std;
const int N = 3e3 + 5;
int x, y, t;
char a[N], b[N];
int c[N][N];
int dfs(int p, int q);
int main()
{
memset(c, -1, sizeof(c));
cin >> a >> b;
x = strlen(a);
y = strlen(b);
int t = dfs(0, 0);//t为最长相同序列的长度
int k = 0;
for (int i = 0; i <= x - 1; i++)
{
if (t == 0) break;
for (int j = k; j <= y - 1; j++)
{
if (c[i][j] == t && a[i] == b[j])//这种情况表明有一种最长相同序列从i、j开始
{
cout << a[i];
k = j + 1;//更新状态
t--;
break;
}
}
}
return 0;
}
int dfs(int p, int q)//记忆化搜索,p表示第1行的序号,q表示第二行的序号(注意是从0开始的)
{
int ans = 0;
if (c[p][q] == -1)//未被标记的话搜索,我这里是从前往后搜索的
{
if (p == (x - 1) && q != (y - 1))
{
if (a[p] == b[q])
{
ans = 1;
}
else
{
ans = dfs(p, q + 1);
}
}
else if (p != (x - 1) && q == (y - 1))
{
if (a[p] == b[q])
{
ans = 1;
}
else
{
ans = dfs(p + 1, q);
}
}
else if (p == (x - 1) && q == (y - 1))
{
if (a[p] == b[q])
{
ans = 1;
}
}
else
{
if (a[p] != b[q])
{
ans = max(dfs(p + 1, q), dfs(p, q + 1));
}
else if (a[p] == b[q])
{
ans = dfs(p + 1, q + 1) + 1;
}
}
c[p][q] = ans;//初次搜索后直接标记,其含义为从第一个第p个数和第二行第q个数开始的最长相同序列长度
}
else
{
ans = c[p][q];
}
return ans;
}