2- PyTorch

1. Overview

  1. 在人的智能中,最经常做的事情是推理和预测,在机器学习中也是如此。我们在以往的算法课中,所接触的穷举、贪心、分治和动规等算法都是由人设计的,而在机器学习中,算法是由数据训练得到的

  1. 人工智能是一个很庞大的领域:
    在这里插入图片描述

  1. 表示学习(Representation Learning):是一种特征的提取,原始数据中的数据量可能很大,并且特征很多,所以我们希望用一种更好的方式来表示数据样本的信息。为什么不希望特征(feature)多呢?因为feature越多,需要的采样数据也就越多(指数级增加),在工程性方面也要考虑这个问题。
    在这里插入图片描述
    DeepLearning就是将特征转为了简单特征,它设立了一个额外的层来提取特征,接入到学习器最后输出。

  1. 类似于神经元,神经网络设计了感知机(preceptron):
    在这里插入图片描述

  1. 反向传播算法:在每一步求一次偏导,通过链式法则传递到最开始的输入
    在这里插入图片描述

2. 线性模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值