hadoop-2.6.1 winutil处理

原始数据

HDFS

words

hellotom
hellojerry
hellokitty
helloworld
hellotom

Map阶段

1.每次读一行数据,

2.拆分每行数据,

3.每个单词碰到一次写个1

<0, "hello tom">

<10, "hello jerry">

<22, "hello kitty">

<34, "hello world">

<46, "hello tom">

 

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
 * LongWritable 偏移量 long,表示该行在文件中的位置,而不是行号
 * Text map阶段的输入数据 一行文本信息 字符串类型 String
 * Text map阶段的数据字符串类型 String
 * IntWritable map阶段输出的value类型,对应java中的int型,表示行号
 */
public class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable>{
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //读取每行文本
        String line = value.toString();
        //splite拆分每行
        String[] words = line.split(" ");//分词
        //取出每个单词
        for(String word : words) {
            //将单词转为Text类型
            Text wordText = new Text(word);
            //将1转变为IntWritable
            IntWritable outValue = new IntWritable(1);
            //写出单词,跟对应1
            context.write(wordText, outValue);
        }
    }
}

reduce阶段

1.把单词对应的那些1

2遍历,

3求和

<hello, {1,1,1,1,1}>

<jerry, {1}>

<kitty, {1}>

<tom, {1,1}>

<world, {1}>
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
 
import java.io.IOException;
 
/***
 * Text 输入的字符串类型,序列化
 * IntWritable 输入一串1,序列化
 * Text 输出的字符串类型,序列化
 * IntWritable 输出的求和数组,序列化
 * ***/
public class WordCountReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
    /***
     * key 输入单词名字
     * values 输入一串1
     * context 输出的工具
     * ***/
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum=0;
        //遍历一群1
        for(IntWritable i:values){
            sum+=i.get();
        }
        context.write(key,new IntWritable(sum));
    }
}

使用对象

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;;
import org.apache.hadoop.mapreduce.Job;
 
public class WordCount {
    public static void main(String[] args) throws Exception {
        //定义配置对象
        Configuration conf=new Configuration();
        //定义一个工作任务对象
        Job job=Job.getInstance(conf);
 
        //获取map阶段的一个对象
        job.setMapperClass(WordCountMap.class);
        //指定map阶段的一个输出key
        job.setMapOutputKeyClass(Text.class);
        //指定map阶段输出的values类型
        job.setMapOutputValueClass(IntWritable.class);
        //map阶段的输入文件
        FileInputFormat.setInputPaths(job,new Path("C:\\Users\\1234\\Desktop\\123.txt"));
 
        //指定Reduce的类
        job.setReducerClass(WordCountReduce.class);
        //指定reduce阶段的一个输出key
        job.setOutputKeyClass(Text.class);
        //指定reduce阶段输出的values类型
        job.setOutputValueClass(IntWritable.class);
        //指定reduce阶段的输出文件
        FileOutputFormat.setOutputPath(job,new Path("C:\\Users\\1234\\Desktop\\456"));
 
        //submit
        job.waitForCompletion(true);
    }
}

处理后数据

hello        5 

jerry         1

kitty         1

tom          2

world       1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值