一、递归是什么?
程序调用自身的编程技巧称为递归( recursion)。 递归做为一种算法在程序设计语言中广泛应 用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复 杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可 描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。 递归的主要思考方式在 于:把大事化小
二、递归的特点
函数调用形成栈帧,该函数所定义的所有临时(局部)变量都在该函数的栈帧内进行空间开辟。函数返回时自动释放该函数的栈帧结构。
不合法的递归容易产生栈溢出。合法的递归是有限次的。
由于调用函数是有成本的(时间成本和空间成本),即调用函数需要时间,也需要开辟新的空间,所以,递归的效率比较低(缺点),但是代码实现比较简单(优点)。
三、什么情况下能使用递归。
1.对应的问题的子问题可以用同样的方法解决
2.递归必须有出口,是有限次的。
3.存在限制条件,当满足这个限制条件的时候,递归便不再继续。 每次递归调用之后越来越接近这个限制条件。
例如:
求n的阶乘
n! 可以看作 n乘n-1!
n-1!可以看作 n乘n-2的阶乘
......
3!可以看成 3乘2!
2!=2
即可实现一下代码
int Factorial(int n)
{
if(n==2)
{
return 2;
}
return n * Factorial(n-1)
}