BZOJ2301 [HAOI2011]Problem b

标签:莫比乌斯反演,容斥原理

题目

题目传送门

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input
2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

分析

就是BZOJ1101那题的容斥原理升级版本

http://blog.csdn.net/qwerty1125/article/details/78788467

code

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#define mem(x,num) memset(x,num,sizeof x)
using namespace std;
inline ll read()
{
    ll f=1,x=0;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int maxn=50006;
int cnt=0,mu[maxn],sum[maxn],prime[maxn];
bool is_prime[maxn];
int cal(int n,int m)
{
    if(n>m)swap(n,m);
    int ans=0,pos;
    for(int i=1;i<=n;i=pos+1){
        pos=min(n/(n/i),m/(m/i));
        ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main()
{
    mu[1]=1;
    rep(i,2,maxn-6){
        if(!is_prime[i])prime[++cnt]=i,mu[i]=-1;
        rep(j,1,cnt){
            if(i*prime[j]>maxn-6)break;
            is_prime[prime[j]*i]=1;
            if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
            else mu[i*prime[j]]=-mu[i];
        }
    }
    rep(i,1,maxn-6)sum[i]=sum[i-1]+mu[i];
    int Que=read();
    while(Que--){
        int a=read(),b=read(),c=read(),d=read(),k=read();
        a--,c--;
        a/=k,b/=k,c/=k,d/=k;
        printf("%d\n",cal(a,c)+cal(b,d)-cal(a,d)-cal(b,c));
    }
    return 0;
}
发布了423 篇原创文章 · 获赞 46 · 访问量 14万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览