airflow基础知识

1、DAG相关概念

1.1 DAG简介

通常意义上的DAG是图论中的概念,全称是Directed Acyclic Graph,即有向无环图。在图论中,如果一个有向图无法从某个顶点出发经过若干条边回到该顶点,则这个图是一个有向无环图。图4-1是一个有向无环图的例子。

有向无环图非常适合描绘工作流。我们把图4-1中的图想象成一个工作流,图的顶点对应任务,图的边对应任务之间的依赖关系,那么该工作流包含a、b、c、d、e共5个任务。b任务必须在a任务完成后才能执行,c任务也必须在a任务完成后才能执行,d任务必须在a、b、c任务都完成后才能执行,e任务必须在a、b、c、d任务都完成后才能执行。更进一步地,如果我们用代码来表示有向无环图,即可获得工作流的代码表达。在Airflow中,图4-1所示的有向无环图可以用代码清单4-1表示。​(为简单起见,假设a、b、c、d、e共5个任务都是虚拟任务,没有具体的内容,在Airflow中,常常用DummyOperator来构造这类任务。​)

from airflow import DAG
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Studying!!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值