蓝桥杯:九宫格重排【BFS】【Python】

如下图的九宫格中,放着 1 ~ 8 的数字卡片,还有一个格子空着。与空格子相邻的格子中的卡片可以移动到空格中。 经过若干次移动,可以形成图 2 所示的局面。

我们把上图的局面记为:12345678.

把下图的局面记为:123.46758

显然是按从上到下,从左到右的顺序记录数字,空格记为句点。

题目的任务是已知九宫的初态和终态,求最少经过多少步的移动可以到达。如果无论多少步都无法到达,则输出 -1。

输入描述

输入第一行包含九宫的初态,第二行包含九宫的终态。

输出描述

输出最少的步数,如果不存在方案,则输出 -1。

输入输出样例

示例

输入

12345678.
123.46758

输出

3

典型的BFS问题,像这一种在一个平面上移动的,要先移动空的格子,这样就可以只移动一个格子就行,如果是移动数字的话就要移动八个数。可以先把一维数转换成为二维数组的下标来进行移动,移动完后再把其转换成一维数组

具体转换公式:

一维转二维 : x = index // 数组宽度 , y = index % 数组宽度

二维转一维 : x * 3 + y

代码实现 

import collections
def bfs():
    q = collections.deque()
    dist = {}                                           #使用字典存储步数
    dist[s1] = 0
    dire = [(1,0),(-1,0),(0,1),(0,-1)]
    q.append(s1)

    while q:
        now = list(q.popleft())                         #将pop出来的字符串逐个加入列表,方便操作
        if "".join(now) == s2:
            return dist["".join(now)]                   #如果达到要求,返回次数
        point = now.index(".")                          #找到移动“.”的索引
        x = point // 3                                  #一维转二维下标,可以自己举个例子试一下
        y = point % 3
        distance = dist["".join(now)]
        for i in dire:
            tx,ty = i
            nx,ny = x + tx, y + ty
            if nx in [0,1,2] and ny in [0,1,2]:         #如果没有过界
                new_now = now.copy()
                new_now[point],new_now[nx*3 + ny] = new_now[nx*3 + ny],new_now[point]       #二维转一维
                if "".join(new_now) not in dist.keys():                                     #如果没有出现过在字典中,就创建并且步数加1
                    dist.setdefault("".join(new_now),distance+1)
                    q.append("".join(new_now))

    return -1


s1 = input()
s2 = input()
print(bfs())

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值