如下图的九宫格中,放着 1 ~ 8 的数字卡片,还有一个格子空着。与空格子相邻的格子中的卡片可以移动到空格中。 经过若干次移动,可以形成图 2 所示的局面。
我们把上图的局面记为:12345678.
把下图的局面记为:123.46758
显然是按从上到下,从左到右的顺序记录数字,空格记为句点。
题目的任务是已知九宫的初态和终态,求最少经过多少步的移动可以到达。如果无论多少步都无法到达,则输出 -1。
输入描述
输入第一行包含九宫的初态,第二行包含九宫的终态。
输出描述
输出最少的步数,如果不存在方案,则输出 -1。
输入输出样例
示例
输入
12345678.
123.46758
输出
3
典型的BFS问题,像这一种在一个平面上移动的,要先移动空的格子,这样就可以只移动一个格子就行,如果是移动数字的话就要移动八个数。可以先把一维数转换成为二维数组的下标来进行移动,移动完后再把其转换成一维数组
具体转换公式:
一维转二维 : x = index // 数组宽度 , y = index % 数组宽度
二维转一维 : x * 3 + y
代码实现
import collections
def bfs():
q = collections.deque()
dist = {} #使用字典存储步数
dist[s1] = 0
dire = [(1,0),(-1,0),(0,1),(0,-1)]
q.append(s1)
while q:
now = list(q.popleft()) #将pop出来的字符串逐个加入列表,方便操作
if "".join(now) == s2:
return dist["".join(now)] #如果达到要求,返回次数
point = now.index(".") #找到移动“.”的索引
x = point // 3 #一维转二维下标,可以自己举个例子试一下
y = point % 3
distance = dist["".join(now)]
for i in dire:
tx,ty = i
nx,ny = x + tx, y + ty
if nx in [0,1,2] and ny in [0,1,2]: #如果没有过界
new_now = now.copy()
new_now[point],new_now[nx*3 + ny] = new_now[nx*3 + ny],new_now[point] #二维转一维
if "".join(new_now) not in dist.keys(): #如果没有出现过在字典中,就创建并且步数加1
dist.setdefault("".join(new_now),distance+1)
q.append("".join(new_now))
return -1
s1 = input()
s2 = input()
print(bfs())