python
文章平均质量分 56
flying_coder
graph representation learning、Anomaly Detection, Graph Prompt Learning, Graph Foundation Model
展开
-
Python zip()函数个人遇到的小问题——当输入的列表个数不固定的时候如何解决
Python zip()函数个人遇到的小问题——当输入的列表个数不固定的时候如何解决原创 2022-07-09 12:39:28 · 812 阅读 · 1 评论 -
关于python numpy.quantile()方法的理解以及分位数的理解
近期在编写python代码的时候遇到了python的numpy包中的quantitle()方法,产生了困惑,没有明白其得到的是什么,查阅之后发现,其实意思是分为数的意思,里面的参数q如果传入的是一个值就是求一个分位数,如果是一个list就是分别求不同的分位数,那么?如何通俗地理解分位数?直观来看,分位数就是用概率作为依据将一批数据分开的那个点。注意选取的是值而不是索引,这在python数据操作中着重注意一下一、数据分位数是数据分析中常用的一个统计量,经过抽样得到一个样本值,以考核分数为例:原创 2021-02-02 17:49:11 · 25153 阅读 · 4 评论 -
VAE-变分自编码器-Auto-Encoding Variational Bayes-详细推导
mac太难了,我想把我写好的word复制粘贴,一复制电脑就死机 炸裂,大家凑合看看图片吧,word可以看我的资源中心原创 2020-12-24 14:49:04 · 450 阅读 · 0 评论 -
好文分享—— RNN基本原理以及基于Pytorch实践
转载自https://blog.csdn.net/hei653779919/article/details/102868128作者隔壁的NLP小哥RNN神经网络和基于Pytorch的实践 本文主要讲述了RNN循环神经网络的基本原理和利用pytorch进行序列生成的实践,原理的部分主要参考 https://blog.csdn.net/HappyRocking/article/details/83657993,实践的部分主要参考的 是《深度学习原理和Pytorch实战》。在这里向..转载 2020-12-23 19:35:44 · 1039 阅读 · 1 评论 -
pytorch Tensor及其基本操作
今日好文,在使用pytorch过程中遇到了tensor的处理问题,这篇知乎文章中作者zcyanqiu写得非常全面,特转载,望能够帮助到大家~转载:本章只是对pytorch的常规操作进行一个总结,大家看过有脑子里有印象就好,知道有这么个东西,需要的时候可以再去详细的看,另外也还是需要在实战中多运用。Tensor attributes:在tensor attributes中有三个类,分别为torch.dtype, torch.device, 和 torch.layout其中, torch转载 2020-12-21 13:46:27 · 608 阅读 · 0 评论 -
关于MAC中anaconda下python版本的问题
不知道各位有没有出现过这种情况,就是mac下的Terminal中输入python始终都是anaconda的默认python,并且如果在pycharm中设置编译器的时候如果选取的是python,那么pycharm使用的始终是anaconda的默认python无法切换到子环境的python版本中,解决方案就是必须要使用python3对Pycharm的环境进行设置,并且在anaconda的Terminal中也得使用python3来调用子环境的python才可以...原创 2020-12-18 15:09:52 · 853 阅读 · 0 评论 -
忘了 忘了,以前学的矩阵知识全交给老师了,敲黑板了,矩阵乘法实例讲解
在这个地方整蒙了,W1和W2这俩是矩阵的标记,但是后面只有个Tr-1和Cr-1,我????实际上,1x Tr-1这种表示,即可以是向量也可以是矩阵呀,没有问题,往下理解是向量,往上理解就是矩阵,其次,W1与做运算是将W1当作Tr-1× 1的矩阵进行运算,而W3和运算是将其当成1×Cr-1进行运算,我们可以看到W1和W3是都是用的R^(?)的形式表示的矩阵,但是运算时候却不一样,敲黑板了!这就是我整蒙圈的地方,你想R^(?)是个欧几里得空间,1×Cr-1和Cr-1× 1都是R^C...原创 2020-05-22 21:23:03 · 651 阅读 · 0 评论 -
TensorFlow中数据的feed与fetch
TensorFlow中数据的feed与fetch一:占位符(placeholder)与feed当我们构建一个模型的时候,有时候我们需要在运行时候输入一些初始数据,这个时候定义模型数据输入在tensorflow中就是用placeholder(占位符)来完成。它的定义如下:def placeholder(dtype, shape=None, name=None):其中dtype表示数据类型,shape表示维度,name表示名称。它支持单个数值与任意维度的数组输入。1. 单个数值占位符定义转载 2020-05-11 00:04:00 · 337 阅读 · 1 评论 -
GCN使用的数据集Cora、Citeseer、Pubmed、Tox21格式
文章目录 Cora、Citeseer、Pubmed 以Cora为例 数据格式示例 Tox21 数据集 本文分享一下图卷积网络GCN里用到的一些数据集的格式Cora、Citeseer、Pubmed├── gcn│ ├── data //图数据│ │ ├── ind.citeseer.allx│ │ ├── ind.citeseer.ally│ │ ├── ind.cite转载 2020-05-10 16:21:27 · 4591 阅读 · 3 评论 -
训练过程中的train,val,test的区别
train是训练集,val是训练过程中的测试集,是为了让你在边训练边看到训练的结果,及时判断学习状态。test就是训练模型结束后,用于评价模型结果的测试集。只有train就可以训练,val不是必须的,比例也可以设置很小。test对于model训练也不是必须的,但是一般都要预留一些用来检测,通常推荐比例是8:1:1val是validation的简称。training dataset和validation dataset都是在训练的时候起作用。而因为validation的数据集和training没有.转载 2020-05-10 16:12:31 · 2764 阅读 · 0 评论 -
一文看懂Python列表表达式及高阶函数如lambda, zip, enumerate, map和filter方法
深入了解和熟练使用python的列表表达式和内置的一些高阶函数如lamda, zip, enumerate, map, filter, reduce, sorted方法是python学习,面试和工作的必备技能。正是它们给了python优秀的特性,从而使python有别于其它编程语言。网上的介绍和教程有很多,但感觉还是比较零散,解读也不够深入,小编决定再次动手写篇总结。如果大家还没读过小编写的一文看懂python系列文章,请先阅读一文看懂Python面向对象编程(Python学习与新手入门必看)-绝对原创和一转载 2020-05-09 23:37:17 · 419 阅读 · 0 评论 -
python之三元表达式、列表生成式、字典表达式、生成器表达式
1.三元表达式 格式为:条件成立时的返回值 if 条件 else 条件不成立时的返回值 总结:多行判断,一行代码解决。就是一条if判断的简写代码语法2.列表生成式 方括号【】 快速生成一个列表,也是一条简写代码语法 格式: l=[item**2 for item in range(1,11)] print (l)...转载 2020-05-09 23:34:53 · 777 阅读 · 0 评论 -
如何理解sparse.csr_matrix
CSR方法采取按行压缩的办法, 将原始的矩阵用三个数组进行表示和大家分享下我怎样理解的from scipy import sparsedata = np.array([1, 2, 3, 4, 5, 6]) #所有的非零数值indices = np.array([0, 2, 2, 0, 1, 2]) #所有值得列索引indptr = np.array([0, 2, 3, 6]) #每行的的非零数据 data[i:i+1]mtx = spars转载 2020-05-09 17:38:46 · 740 阅读 · 0 评论 -
Python中数组,列表:冒号的灵活用法介绍(np数组,列表倒序)
让我们来看一个例子:import numpy as npx=np.array([[1,2,3],[5,6,7],[7,8,9]])print(x)Out[64]:array([[1, 2, 3], [5, 6, 7], [7, 8, 9]])以上的结果我想大家应该没问题把,就是定义了一个np数组,关键在下面print(x[:,::-1])Out[65]:[[3 2 1] [7 6 5] [9 8 7]]以上的代码实现了一种功能,就是将数组倒序排列了,每个维度上转载 2020-05-09 17:26:38 · 829 阅读 · 0 评论 -
针对python矩阵运算的理解
原创 2019-09-02 16:37:18 · 469 阅读 · 0 评论