题解 洛谷 Luogu P1073 [NOIP 2009 提高组] 最优贸易 强连通分量 Tarjan 缩点 拓扑排序 动态规划 C++

题目

传送门

P1073 [NOIP 2009 提高组] 最优贸易 - 洛谷https://www.luogu.com.cn/problem/P1073

思路

以下将强连通分量简称为 SCC

有两个目标

目标一:至多买入一次卖出一次,使收益最大 (不会低于 0)

目标二:以 1 为起点,以 n 为终点 (保证从 1 可达 n)

我们只能先买入再卖出,为了完成目标一,我们显然需要知道最低买入价、最高卖出价

即,以某个节点 x 为中点时,x 及其之前的最低价、x 及其之后的最高价
这些信息可以通过 DP 得到

且需要正向建图 DP (得到 x 及其之前的最低价)、反向建图 DP (得到 x 及其之后的最高价)

共计两轮 DP

无特殊性质的有向图不便于 DP,我们可以考虑缩点

缩点后,只要知道每个 SCC 中的最低价和最高价 (将此视为新图的点权) 即可求解

因此缩点是可行的

缩点后无特殊性质的有向图变为 DAG,此后即可方便地 DP (拓扑排序 DP)

为了完成目标二,我们需要在拓扑排序 DP 前取出非法节点。非法节点即不能对答案有贡献的节点

举个例子,对于有向图 (1, 4), (2, 4), (3, 2),正向拓扑排序 DP 时,2, 3 都是非法节点

因为起点只有 1,2, 3 都不是起点,且 1 不会到达 2, 3,它们不能对答案有贡献,不然就错了

为什么要取出非法节点呢?因为拓扑排序 DP 需要正确地维护入度

若有非法节点通向合法节点,则这些合法节点的入度会永久增加而始终无法入队

那怎么取出非法节点呢?还是用拓扑排序

不会的先去学习一下 <Luogu.P1807 最长路> 比较好,取出非法节点这一步和本题是一样的

P1807 最长路 - 洛谷https://www.luogu.com.cn/problem/P1807之后遍历所有 SCC 即可,如果在合法分支上,更新 ans:ans = max(ans, dp[1][i] - dp[0][i])

总结

1.输入,缩点

2.建新图 (正向 & 反向)

3.拓扑排序剥离非目标分支,拓扑排序 DP (正向 & 反向)

4.遍历 scc,根据 DP 信息计算答案

细节

1.正向新图和反向新图的信息可用下标控制,实现代码复用

正向新图用下标 0,DP 最低价;反向新图用下标 1,DP 最高价

2.缩点时 Tarjan(1) 即可,1 不可达的节点就不用管了

3.原图存一个正向的即可,有这个信息,在建新图时就可以建反向的

其余细节见代码注释

代码

#include <functional>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
//V 用于为 DP 赋初值,最低价赋初值为 0x3f,最高价赋初值为 0
constexpr int N = 1E5 + 5, V[2]{ 0x3f, 0 };
//原图、新图 (正向 & 反向)
vector<int> to[N], scc_to[2][N];
//Tarjan 缩点要用的、SCC 点权 (最低价 & 最高价)、原图点权、新图入度 (正向 & 反向) DP 信息 (最低价 & 最高价)、合法分支的起点 (正向 & 反向)、拓扑排序要用的队列
int dfn[N], low[N], stk[N], scc_id[N], scc_w[2][N], w[N], scc_from[2][N], dp[2][N], start[2], que[N];
//Tajjan 缩点要用的、是否在非法分支上
bool instk[N], invalid[N];
//Tarjan 缩点要用的、输入要用的、答案
int time_, top = -1, scc_cnt, n, m, a, b, c, ans;
//通过下标控制最小值最大值
int A(int x, int y) { return min(x, y); }
int B(int x, int y) { return max(x, y); }
function<int(int, int)> op[2]{ A, B };
void Tarjan(int x)
{
	dfn[x] = low[x] = ++time_;
	stk[++top] = x;
	instk[x] = true;
	for (auto X : to[x])
		if (dfn[X] == 0)
			Tarjan(X),
			low[x] = min(low[x], low[X]);
		else if (instk[X])
			low[x] = min(low[x], dfn[X]);
	if (low[x] == dfn[x])
	{
		int X;
		++scc_cnt;
		scc_w[0][scc_cnt] = 1E9; //SCC 最低价初始化为 INF,SCC 最高价初始化为 0
		do
		{
			X = stk[top--];
			instk[X] = false;
			scc_id[X] = scc_cnt;
			scc_w[0][scc_cnt] = op[0](scc_w[0][scc_cnt], w[X]); //更新 SCC 点权
			scc_w[1][scc_cnt] = op[1](scc_w[1][scc_cnt], w[X]);
		} while (X != x);
	}
}
void preprocess() //输入,缩点
{
	cin >> n >> m;
	for (int i = 1; i <= n; ++i) //原图点权
		cin >> w[i];
	while (m-- && cin >> a >> b >> c)
		if (c == 1)
			to[a].emplace_back(b);
		else
			to[a].emplace_back(b),
			to[b].emplace_back(a);
	Tarjan(1);
	start[0] = scc_id[1]; //新图正向拓扑排序时,合法分支起点是原图 1 所在的 SCC
	start[1] = scc_id[n]; //新图反向拓扑排序时,合法分支起点是原图 n 所在的 SCC
}
void build() //建新图 (正向 & 反向)
{
	for (int i = 1; i <= n; ++i)
	{
		int x = scc_id[i];
		for (auto j : to[i])
		{
			int y = scc_id[j];
			if (x == y) continue;
			scc_to[0][x].emplace_back(y);
			++scc_from[0][y];
			scc_to[1][y].emplace_back(x);
			++scc_from[1][x];
		}
	}
}
void toposort(int flag) //拓扑排序剥离非目标分支,拓扑排序 DP (正向 & 反向)
{
	//常用数组降维,简化代码
	auto& scc_to_ = scc_to[flag];
	auto& scc_w_ = scc_w[flag];
	auto& scc_from_ = scc_from[flag];
	auto& dp_ = dp[flag];
	auto& op_ = op[flag];
	auto& start_ = start[flag];
	//剥离非法分支
	int head = 0, tail = -1;
	for (int i = 1; i <= scc_cnt; ++i)
		if (i != start_ && scc_from_[i] == 0)
			que[++tail] = i;
	while (head <= tail)
	{
		int x = que[head++];
		invalid[x] = true;
		for (auto X : scc_to_[x])
			if (X != start_ && --scc_from_[X] == 0)
				que[++tail] = X;
	}
	//拓扑排序 DP
	memset(dp_, V[flag], sizeof(dp_[0]) * (scc_cnt + 1)); //别忘了为 DP 信息赋初值
	que[++tail] = start_;
	while (head <= tail)
	{
		int x = que[head++];
		dp_[x] = op_(dp_[x], scc_w_[x]);
		for (auto X : scc_to_[x])
		{
			dp_[X] = op_(dp_[X], dp_[x]);
			if (--scc_from_[X] == 0)
				que[++tail] = X;
		}
	}
}
void solve() //遍历 scc,根据 DP 信息计算答案
{
	for (int i = 1; i <= scc_cnt; ++i)
		if (invalid[i] == false) //在合法分支上
			ans = max(ans, dp[1][i] - dp[0][i]);
	cout << ans;
}
int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	preprocess();
	build();
	toposort(0);
	toposort(1);
	solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值