Leetcode 300 最长上升子序列

这道题有两种解决方法:一种是动态规划的方法,时间复杂度为O(N^2);一种是动态规划+二分查找的方法,时间复杂度为O(NlogN) 。
我先贴一下第一种使用动态规划的方法,这也是大家第一眼能想到的办法:

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums.length==0) return 0;
        int []dp=new int[nums.length];
        dp[0]=1;
        for(int i=1;i<nums.length;i++){
            dp[i]=1;
            for(int j=i-1;j>=0;j--){
                if(nums[i]>nums[j]){
                    dp[i]=Math.max(dp[i],dp[j]+1);
                }
            }
        }
        int max=0;
        for(int i=0;i<dp.length;i++){
            System.out.println(dp[i]);
            max=Math.max(max,dp[i]);
        }
        return max;
    }
}

然后我学习了一下题解里面第二种使用动态规划+二分查找的方法,代码下次再试着写一遍。只说一下我的理解,其实这种办法在看我来核心思想也是动态规划,只是因为上一种方法得到的dp数组不是单调的,因此每次都需要从遍历一遍,这就是花费时间的地方。第二种方法通过创建一个tail数组,tail[i]用来表示长度为i+1的最长上升子序列的结尾最小值,这就保证了tail数组是单调递增的,每当新进一个数字num时,在查找并修改tail数组时,可以使用二分查找,加快查找速度,使得最后的时间复杂度达到O(NlogN) 。//且ail数组的长度就是题目所求的最长递增子序列的长度.
这是我的理解,不一定对,下次自己试着写一遍代码的时候会再思考一下^ ^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值