这道题有两种解决方法:一种是动态规划的方法,时间复杂度为O(N^2);一种是动态规划+二分查找的方法,时间复杂度为O(NlogN) 。
我先贴一下第一种使用动态规划的方法,这也是大家第一眼能想到的办法:
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length==0) return 0;
int []dp=new int[nums.length];
dp[0]=1;
for(int i=1;i<nums.length;i++){
dp[i]=1;
for(int j=i-1;j>=0;j--){
if(nums[i]>nums[j]){
dp[i]=Math.max(dp[i],dp[j]+1);
}
}
}
int max=0;
for(int i=0;i<dp.length;i++){
System.out.println(dp[i]);
max=Math.max(max,dp[i]);
}
return max;
}
}
然后我学习了一下题解里面第二种使用动态规划+二分查找的方法,代码下次再试着写一遍。只说一下我的理解,其实这种办法在看我来核心思想也是动态规划,只是因为上一种方法得到的dp数组不是单调的,因此每次都需要从遍历一遍,这就是花费时间的地方。第二种方法通过创建一个tail数组,tail[i]用来表示长度为i+1的最长上升子序列的结尾最小值,这就保证了tail数组是单调递增的,每当新进一个数字num时,在查找并修改tail数组时,可以使用二分查找,加快查找速度,使得最后的时间复杂度达到O(NlogN) 。//且ail数组的长度就是题目所求的最长递增子序列的长度.
这是我的理解,不一定对,下次自己试着写一遍代码的时候会再思考一下^ ^