2025AI生成视频王炸,DeepSeek+剪映!

1,DeepSeek

DeepSeek手机版本和Deepseek使用技巧介绍,有一些技巧可以帮助用户更好地利用该工具。首先,利用高级搜索功能,可以通过设置特定的过滤条件,缩小搜索范围,从而提高找到相关内容的概率。其次,定期更新应用版本,确保使用最新的功能和修复,保持良好的使用体验。此外,合理利用书签功能,可以将常用的搜索结果保存,方便日后快速访问。最后,用户可以通过参与社区讨论,获取其他用户的使用心得和技巧,进一步提升搜索效率。

提示词:

440bfa11db0eacd5ad29a80715400689.png

链接:https://pan.quark.cn/s/205e13243653

2,剪映pojie

通过剪映手机版,获取一堆必须VIP才能用的功能和素材,下载剪映特殊版本,链接地址如下:

链接:https://pan.quark.cn/s/5478bf16982e

1),首先,打开剪映首页“更多工具” 如下图所示:

9ef16b662b2378bb983d669f755b09ba.png

2),然后在选择“图文成片”这个选项

a3ca368813147ecb298b4d82d1d5d950.png

3)第三步 在选择图文成片

生成图文可以使用Deepseek生成

e76089ab1180c7d7b5d7e0104fa12a3f.png

e4e4b3fbbe0e652fbb2d5e1d2148c020.png

4),最后生成点应用生成视频即可;

d74c3549b3b6af24c5fa10cc148c9a55.png

生成视频有水印,可以通过视频去水印工具“HitPaw Watermark Remover,一键视频去水印神器”

去水印》》》

链接:https://pan.quark.cn/s/f4d4f390ae87

3,豆包插件

豆包插件,

可对页面内容进行总结,文章改写、AI翻译等等。

使用步骤:

第一步:打开谷歌浏览器,并访问扩展程序页面 chrome://extensions

第二步:开启页面右上角的「开发者模式」

49ced613c50fc602653af49a668d74fa.png

246ba075ee4b41186afd0e34dd42041e.png

0a068ff31827f8b739b39482d6c6b725.png

链接:https://pan.quark.cn/s/1ec0056d9335

大幅提升工作效率,告别加班熬夜。

轻松应对海量信息,快速找到关键内容。

做出更明智的决策,把握每一个机会。

还在等什么?赶紧收藏这篇文章,开始你的 DeepSeek 逆袭之旅吧!

关注我们,获取更多 DeepSeek 使用技巧和效率提升秘籍!

#DeepSeek #效率工具 #逆袭 #职场 #学习

网盘资源分享:

https://kdocs.cn/l/cior4AhTyOpG

### 比较DeepSeek和Silhouette技术 #### DeepSeek概述 DeepSeek是一种基于深度学习的技术框架,专注于无监督相似度学习以及部分有序集合的应用[^2]。该方法利用神经网络模型自动提取特征并建立数据间的复杂关系模式,适用于处理大规模高维数据集,在图像识别、自然语言处理等领域表现出色。 #### Silhouette分析工具简介 相比之下,Silhouette更多是指一种评估聚类效果的质量指标而非具体某项信息技术或工具。然而,在某些上下文中,“Silhouette”也可能指代特定软件包或平台的一部分功能模块,用于计算样本与其所在簇内其他成员之间的紧密程度,并与其他最近邻簇进行比较得出评分。此分数范围从-1到+1,其中较高的正值表示更好的分类结果[^3]。 #### 技术特点对比 - **应用场景** - DeepSeek主要应用于需要通过机器学习算法挖掘潜在关联的任务场景下;而Silhouette则通常作为辅助评价手段来衡量已有分组方案的好坏。 - **工作原理** - 前者依赖于深层架构下的参数优化过程实现端到端的学习目标;后者则是依据几何距离定义来进行量化打分。 - **输出形式** - 使用DeepSeek可以获得经过训练后的预测模型及其对应的性能统计报告;对于Silhouette而言,则会给出各个观测点关于所属类别稳定性的直观数值描述。 ```python import numpy as np from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans # Example code snippet demonstrating how to calculate silhouette score with k-means clustering. X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]]) kmeans_labels = KMeans(n_clusters=2).fit_predict(X) silhouette_avg = silhouette_score(X, kmeans_labels) print(f'Silhouette Score: {silhouette_avg}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农乐园

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值