最长公共子序列(C++)

题目描述

一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk}是X的子序列是指存在一个严格递增的下标序列{i1,i2,…,ik},使得对于所有j=1,2,…,k有:Xij=Zj

例如,序列z = {B,C,D,B} 是序列 X = {A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X={A,B,C,B,D,A,B}和Y={B,D,C,A,B,A},则序列{B,C,A}是X和Y的一个公共子序列,序列 {B,C,B,A}也是X和Y的一个公共子序列。 而且,后者是X和Y的一个最长公共子序列.因为X和Y没有长度大于4的公共子序列。

给定两个序列X={x1,x2,…,xm}和Y={y1,y2….yn}.要求找出X和Y的一个最长公共子序列。

输入格式

第一行是一个数 n。

接下来两行,每行为 n 个数,分别表示X和Y这两个序列。

输出格式

一个数,即两个序列的最长公共子序列的长度。

#include<bits/stdc++.h>
using namespace std;
int n, a[4010], b[4010], f[4010], mx = 0, jc = 0, dp[4010][4010];
int main() {
	cin >> n;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		f[i] = 1;
	}
	for (int i = 1; i <= n; i++) {
		cin >> b[i];
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			if (a[i] == b[j]) {
				dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);
			} else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			mx = max(dp[i][j],mx);
		}
	}
	cout << mx;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值