题目描述
一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk}是X的子序列是指存在一个严格递增的下标序列{i1,i2,…,ik},使得对于所有j=1,2,…,k有:Xij=Zj
例如,序列z = {B,C,D,B} 是序列 X = {A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X={A,B,C,B,D,A,B}和Y={B,D,C,A,B,A},则序列{B,C,A}是X和Y的一个公共子序列,序列 {B,C,B,A}也是X和Y的一个公共子序列。 而且,后者是X和Y的一个最长公共子序列.因为X和Y没有长度大于4的公共子序列。
给定两个序列X={x1,x2,…,xm}和Y={y1,y2….yn}.要求找出X和Y的一个最长公共子序列。
输入格式
第一行是一个数 n。
接下来两行,每行为 n 个数,分别表示X和Y这两个序列。
输出格式
一个数,即两个序列的最长公共子序列的长度。
#include<bits/stdc++.h>
using namespace std;
int n, a[4010], b[4010], f[4010], mx = 0, jc = 0, dp[4010][4010];
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
f[i] = 1;
}
for (int i = 1; i <= n; i++) {
cin >> b[i];
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (a[i] == b[j]) {
dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);
} else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
mx = max(dp[i][j],mx);
}
}
cout << mx;
return 0;
}