斐波那契数列及优化

由来

1202 年,生于意大利比萨的数学家 莱昂纳多·斐波那契 完成了他的传世名著《算盘书》,书中对一个有趣的 “兔子繁殖问题” 进行了研究,斐波那契数列便由此而来。

兔子繁殖问题实际上是 斐波那契 提出的一个数学模型:

  • 假定一对大兔子一年生一对小兔
  • 一对小兔子一年后长大成为一对大兔子
  • 且所有的兔子都长生不死
  • 那么这些兔子是按照什么样的规律繁殖的呢?
  • 第一年,
    • 只有一对小兔子, f(1) = 1
  • 第二年,
    • 这对小兔子长大成为一对大兔子
    • 兔子的对数还是 1, f(2) = 1
  • 第三年,
    • 大兔子生出一对小兔子
    • 兔子的对数变为 2, f(3) = 2
  • 第四年,
    • 大兔子又生出一对小兔子
    • 原来的一对小兔子长大成为一对大兔子
    • 兔子的对数变为 3, f(4) = 3

如果把第 n 年的兔子对数记为 Fn,则:

  • F1=F2=1,且对 n ≥ 3,有 Fn=Fn-1+Fn-2

由于这个数列是由 斐波那契 首先加以研究的,后人就将其称为 斐波那契数列

斐波那契数列数学模型

在这里插入图片描述

代码实现
  1. 暴力递归
    int fib(int N) {
        if (N == 0 || N == 1) return 1;
        return fib(N - 1) + fib(N - 2);
    }
    
    通过递归树可以发现递归效率低下的原因:
    在这里插入图片描述
  • 这个递归树怎么理解?就是说想要计算原问题 f(20),我就得先计算出子问题 f(19)f(18),然后要计算 f(19),我就要先算出子问题 f(18)f(17),以此类推。最后遇到 f(1) 或者 f(2) 的时候,结果已知,就能直接返回结果,递归树不再向下生长了
    递归算法的时间复杂度怎么计算?子问题个数乘以解决一个子问题需要的时间。
    子问题个数,即递归树中节点的总数。显然二叉树节点总数为指数级别,所以子问题个数为 O(2^n)。
    解决一个子问题的时间,在本算法中,没有循环,只有 f(n - 1) + f(n - 2) 一个加法操作,时间为 O(1)。
    所以,这个算法的时间复杂度为 O(2^n),指数级别,爆炸。
    观察递归树,很明显发现了算法低效的原因:存在大量重复计算,比如 f(18) 被计算了两次,而且你可以看到,以 f(18) 为根的这个递归树体量巨大,多算一遍,会耗费巨大的时间。更何况,还不止 f(18) 这一个节点被重复计算,所以这个算法及其低效。
  1. 带备忘录的递归解法
    明确了问题,其实就已经把问题解决了一半。即然耗时的原因是重复计算,那么我们可以造一个「备忘录」,每次算出某个子问题的答案后别急着返回,先记到「备忘录」里再返回;每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不要再耗时去计算了。

    一般使用一个数组充当这个「备忘录」,当然你也可以使用哈希表(字典),思想都是一样的。

    public static int fib(int n) {
        if (n < 0) {
            return 0;
        }
        int[] arr = new int[n + 1];
        return getHelper(arr, n);
    }
    
    private static int getHelper(int[] arr, int n) {
        if (n == 0) {
            return 0;
        } else if (n == 1) {
            return 1;
        }
    
        // 如果f(n)已经计算过,无需再次计算,直接返回
        if (arr[n] != 0) {
            return arr[n];
        }
    
        arr[n] = getHelper(arr, n - 1) + getHelper(arr, n - 2);
        return arr[n];
    }
    

    现在,画出递归树,你就知道「备忘录」到底做了什么。
    在这里插入图片描述
    实际上,带「备忘录」的递归算法,把一棵存在巨量冗余的递归树通过「剪枝」,改造成了一幅不存在冗余的递归图,极大减少了子问题(即递归图中节点)的个数。

此时 递归算法的时间复杂度怎么算?子问题个数乘以解决一个子问题需要的时间。

子问题个数,即图中节点的总数,由于本算法不存在冗余计算,子问题就是 f(1), f(2), f(3)f(20),数量和输入规模 n = 20 成正比,所以子问题个数为 O(n)。

解决一个子问题的时间,同上,没有什么循环,时间为 O(1)。

所以,本算法的时间复杂度是 O(n)。比起暴力算法,是降维打击。

至此,带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和迭代的动态规划已经差不多了,只不过这种方法叫做「自顶向下」,动态规划叫做「自底向上」。

啥叫「自顶向下」?注意我们刚才画的递归树(或者说图),是从上向下延伸,都是从一个规模较大的原问题比如说 f(20),向下逐渐分解规模,直到 f(1)f(2) 触底,然后逐层返回答案,这就叫「自顶向下」。

啥叫「自底向上」?反过来,我们直接从最底下,最简单,问题规模最小的 f(1)f(2) 开始往上推,直到推到我们想要的答案 f(20),这就是动态规划的思路,这也是为什么动态规划一般都脱离了递归,而是由循环迭代完成计算。

  1. dp 数组的迭代解法

    有了上一步「备忘录」的启发,我们可以把这个「备忘录」独立出来成为一张表,就叫做 DP table 吧,在这张表上完成「自底向上」的推算岂不美哉!

	public static int fib(int N) {
    int[] dp = new int[N + 1];
    // base case
    dp[1] = dp[2] = 1;
    for (int i = 3; i <= N; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[N];
   }

在这里插入图片描述
画个图就很好理解了,而且你发现这个 DP table 特别像之前那个「剪枝」后的结果,只是反过来算而已。实际上,带备忘录的递归解法中的「备忘录」,最终完成后就是这个 DP table,所以说这两种解法其实是差不多的,大部分情况下,效率也基本相同。

  1. 细节优化

    讲一个细节优化。细心的读者会发现,根据斐波那契数列的状态转移方程,当前状态只和之前的两个状态有关,其实并不需要那么长的一个 DP table 来存储所有的状态,只要想办法存储之前的两个状态就行了。所以,可以进一步优化,把空间复杂度降为 O(1):

    public static int fib(int n) {
        if (n == 2 || n == 1) {
            return 1;
        }
    
        int prev = 1, curr = 1;
        for (int i = 3; i <= n; i++) {
            int sum = prev + curr;
            prev = curr;
            curr = sum;
        }
        return curr;
    }
    
涉及斐波那契数列的算法
  1. 爬楼梯问题

    爬楼梯,一次只能爬一个台阶或两个台阶,问到第N层有几种爬法。f(n)即为斐波那契数列的定义,不过有一点小的差别就是:当n=0时,需要f(n) =1, 以满足 f(2) = 2,因为显然到第二层有两种爬法。

    public static int fib(int n) {
        if (n == 0 || n == 1) {
            return 1;
        }
    
        int prev = 1, curr = 1;
        for (int i = 2; i <= n; i++) {
            int sum = prev + curr;
            prev = curr;
            curr = sum;
        }
        return curr;
    }
    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值