RabbitMQ基础

RabbitMQ 简介

RabbitMQ 是采用 Erlang 语言实现 AMQP(Advanced Message Queuing Protocol,高级消息队列协议)的消息中间件,它最初起源于金融系统,用于在分布式系统中存储转发消息。

RabbitMQ 发展到今天,被越来越多的人认可,这和它在易用性、扩展性、可靠性和高可用性等方面的卓著表现是分不开的。RabbitMQ 的具体特点可以概括为以下几点:

  • 可靠性: RabbitMQ使用一些机制来保证消息的可靠性,如持久化、传输确认及发布确认等。
  • 灵活的路由: 在消息进入队列之前,通过交换器来路由消息。对于典型的路由功能,RabbitMQ 己经提供了一些内置的交换器来实现。针对更复杂的路由功能,可以将多个交换器绑定在一起,也可以通过插件机制来实现自己的交换器。这个后面会在我们将 RabbitMQ 核心概念的时候详细介绍到。
  • 扩展性: 多个RabbitMQ节点可以组成一个集群,也可以根据实际业务情况动态地扩展集群中节点。
  • 高可用性: 队列可以在集群中的机器上设置镜像,使得在部分节点出现问题的情况下队列仍然可用。
  • 支持多种协议: RabbitMQ 除了原生支持 AMQP 协议,还支持 STOMP、MQTT 等多种消息中间件协议。
  • 多语言客户端: RabbitMQ几乎支持所有常用语言,比如 Java、Python、Ruby、PHP、C#、JavaScript等。
  • 易用的管理界面: RabbitMQ提供了一个易用的用户界面,使得用户可以监控和管理消息、集群中的节点等。在安装 RabbitMQ 的时候会介绍到,安装好 RabbitMQ 就自带管理界面。
  • 插件机制: RabbitMQ 提供了许多插件,以实现从多方面进行扩展,当然也可以编写自己的插件。感觉这个有点类似 Dubbo 的 SPI机制。
RabbitMQ 核心概念

RabbitMQ 整体上是一个生产者与消费者模型,主要负责接收、存储和转发消息。可以把消息传递的过程想象成:当你将一个包裹送到邮局,邮局会暂存并最终将邮件通过邮递员送到收件人的手上,RabbitMQ就好比由邮局、邮箱和邮递员组成的一个系统。从计算机术语层面来说,RabbitMQ 模型更像是一种交换机模型

RabbitMQ 的整体模型架构
在这里插入图片描述
Producer(生产者) :生产消息的一方(邮件投递者)
Consumer(消费者) :消费消息的一方(邮件收件人)

消息一般由 2 部分组成:消息头(或者说是标签 Label)和 消息体。消息体也可以称为 payLoad ,消息体是不透明的,而消息头则由一系列的可选属性组成,这些属性包括 routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(指出该消息可能需要持久性存储)等。生产者把消息交由 RabbitMQ 后,RabbitMQ 会根据消息头把消息发送给感兴趣的 Consumer(消费者)。

Exchange(交换器)
在 RabbitMQ 中,消息并不是直接被投递到 Queue(消息队列) 中的,中间还必须经过 Exchange(交换器) 这一层,Exchange(交换器) 会把我们的消息分配到对应的 Queue(消息队列) 中。

Exchange(交换器) 用来接收生产者发送的消息并将这些消息路由给服务器中的队列中,如果路由不到,或许会返回给 Producer(生产者) ,或许会被直接丢弃掉 。这里可以将RabbitMQ中的交换器看作一个简单的实体

RabbitMQ 的 Exchange(交换器) 有4种类型,不同的类型对应着不同的路由策略:direct(默认),fanout, topic, 和 headers,不同类型的Exchange转发消息的策略有所区别。

  • fanout (扇出) 类型的Exchange路由规则非常简单,它会把所有发送到该Exchange的消息路由到所有与它绑定的Queue中,不需要做任何判断操作,所以 fanout 类型是所有的交换机类型里面速度最快的。fanout 类型常用来广播消息
  • direct 类型的Exchange路由规则也很简单,它会把消息路由到那些 Bindingkey 与 RoutingKey 完全匹配的 Queue 中。
    如果发送消息的时候设置路由键为“warning”,那么消息会路由到 Queue1 和 Queue2。如果在发送消息的时候设置路由键为"Info”或者"debug”,消息只会路由到Queue2。如果以其他的路由键发送消息,则消息不会路由到这两个队列中。
    在这里插入图片描述
  • topic 前面讲到direct类型的交换器路由规则是完全匹配 BindingKey 和 RoutingKey ,但是这种严格的匹配方式在很多情况下不能满足实际业务的需求。topic类型的交换器在匹配规则上进行了扩展,它与 direct 类型的交换器相似,也是将消息路由到 BindingKey 和 RoutingKey 相匹配的队列中,但这里的匹配规则有些不同,它约定:
    • RoutingKey 为一个点号“.”分隔的字符串(被点号“.”分隔开的每一段独立的字符串称为一个单词),如 “com.rabbitmq.client”、“java.util.concurrent”、“com.hidden.client”;
    • BindingKey 和 RoutingKey 一样也是点号“.”分隔的字符串;
    • BindingKey 中可以存在两种特殊字符串“ * ”和“#”,用于做模糊匹配,其中“*”用于匹配一个单词,“#”用于匹配多个单词(可以是零个)。
      在这里插入图片描述
      • 路由键为 “com.rabbitmq.client” 的消息会同时路由到 Queuel 和 Queue2;
      • 路由键为 “com.hidden.client” 的消息只会路由到 Queue2 中;
      • 路由键为 “java.util.concurrent” 的消息将会被丢弃或者返回给生产者(需要设置 mandatory 参数),因为它没有匹配任何路由键。

生产者将消息发给交换器的时候,一般会指定一个 RoutingKey(路由键),用来指定这个消息的路由规则,而这个 RoutingKey 需要与交换器类型和绑定键(BindingKey)联合使用才能最终生效。

RabbitMQ 中通过 Binding(绑定) 将 Exchange(交换器) 与 Queue(消息队列) 关联起来,在绑定的时候一般会指定一个 BindingKey(绑定建) ,这样 RabbitMQ 就知道如何正确将消息路由到队列了,如下图所示。一个绑定就是基于路由键将交换器和消息队列连接起来的路由规则,所以可以将交换器理解成一个由绑定构成的路由表。Exchange 和 Queue 的绑定可以是多对多的关系。
Binding(绑定) 示意图:
在这里插入图片描述
生产者将消息发送给交换器时,需要一个RoutingKey,当 BindingKey 和 RoutingKey 相匹配时,消息会被路由到对应的队列中。在绑定多个队列到同一个交换器的时候,这些绑定允许使用相同的 BindingKey。BindingKey 并不是在所有的情况下都生效,它依赖于交换器类型,比如fanout类型的交换器就会无视,而是将消息路由到所有绑定到该交换器的队列中。

Queue(消息队列)
Queue(消息队列) 用来保存消息直到发送给消费者。它是消息的容器,也是消息的终点。一个消息可投入一个或多个队列。消息一直在队列里面,等待消费者连接到这个队列将其取走。

RabbitMQ 中消息只能存储在 队列 中,这一点和 Kafka 这种消息中间件相反。Kafka 将消息存储在 topic(主题) 这个逻辑层面,而相对应的队列逻辑只是topic实际存储文件中的位移标识。 RabbitMQ 的生产者生产消息并最终投递到队列中,消费者可以从队列中获取消息并消费

多个消费者可以订阅同一个队列,这时队列中的消息会被平均分摊(Round-Robin,即轮询)给多个消费者进行处理,而不是每个消费者都收到所有的消息并处理,这样避免的消息被重复消费。

RabbitMQ 不支持队列层面的广播消费,如果有广播消费的需求,需要在其上进行二次开发,这样会很麻烦,不建议这样做。

Broker(消息中间件的服务节点)
对于 RabbitMQ 来说,一个 RabbitMQ Broker 可以简单地看作一个 RabbitMQ 服务节点,或者RabbitMQ服务实例。大多数情况下也可以将一个 RabbitMQ Broker 看作一台 RabbitMQ 服务器。

下图展示了生产者将消息存入 RabbitMQ Broker,以及消费者从Broker中消费数据的整个流程。
在这里插入图片描述

保证消息一致性

消息一致性,应该包含下面几个:

生产者,确保消息发布成功

  • 消息不会丢,为了确保发布者推送的消息不会丢失,我们需要消息持久化
  • 顺序不会乱
  • 消息不会重复(如重传,导致发布一次,却出现多个消息)

消费者,确保消息消费成功

  • 有序消费
  • 不重复消费

发送端 (生产者)
为了确保发布者推送的消息不会丢失,我们需要消息持久化

  • 持久化:这里的持久化,主要是指将内存中的消息保存到磁盘,避免 mq 宕机导致的内存中消息丢失;然而单纯的持久化,只是保证一致性的其中一个要素,比如 publisher 将消息发送到 exchange,在 broker 持久化的工程中,宕机了导致持久化失败,而 publisher 并不知道持久化失败,这个时候就会出现数据丢失,为了解决这个问题,rabbitmq 提供了事务机制
    • 事务机制:事务机制能够解决生产者与 broker 之间消息确认的问题,只有消息成功被 broker 接受,事务才能提交成功,否则就进行事务回滚操作并进行消息重发。但是使用事务机制会降低 RabbitMQ 的消息吞吐量,不适用于需要发布大量消息的业务场景

为了确定消息正确接收,publisher 需要知道消息投递并成功持久化

  • 消息确认机制
    • 消息确认机制,可以区分为生产端和消费端
    • 生产者将信道设置成 Confirm 模式,一旦信道进入 Confirm 模式,所有在该信道上面发布的消息都会被指派一个唯一的 ID(以 confirm.select 为基础从 1 开始计数)
    • 一旦消息被投递到所有匹配的队列之后,Broker 就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了
    • 如果消息和队列是可持久化的,那么确认消息会将消息写入磁盘之后发出
    • Broker 回传给生产者的确认消息中 deliver-tag 域包含了确认消息的序列号(此外 Broker 也可以设置 basic.ack 的 multiple 域,表示到这个序列号之前的所有消息都已经得到了处理)
  • ACK 机制是消费者从 RabbitMQ 收到消息并处理完成后,反馈给 RabbitMQ,RabbitMQ 收到反馈后才将此消息从队列中删除。
    • 如果一个消费者在处理消息出现了网络不稳定、服务器异常等现象,那么就不会有 ACK 反馈,RabbitMQ 会认为这个消息没有正常消费,会将消息重新放入队列中
    • 如果在集群的情况下,RabbitMQ 会立即将这个消息推送给这个在线的其他消费者。这种机制保证了在消费者服务端故障的时候,不丢失任何消息和任务
    • 消息永远不会从 RabbitMQ 中删除,只有当消费者正确发送 ACK 反馈,RabbitMQ 确认收到后,消息才会从 RabbitMQ 服务器的数据中删除
死信队列 DLX,Dead-Letter-Exchange

利用DLX,当消息在一个队列中变成死信(dead message,就是没有任何消费者消费)之后,他能被重新publish到另一个Exchange,这个Exchange就是DLX

消息变为死信的几种情况:

  • 消息被拒绝(basic.reject/basic.nack)同时requeue=false(不重回队列)
  • TTL过期
  • 队列达到最大长度

DLX也是一个正常的Exchange,和一般的Exchange没有任何的区别,他能在任何的队列上被指定,实际上就是设置某个队列的属性。
当这个队列出现死信的时候,RabbitMQ就会自动将这条消息重新发布到Exchange上去,进而被路由到另一个队列。可以监听这个队列中的消息作相应的处理,这个特性可以弥补rabbitMQ以前支持的immediate参数的功能。

死信队列的设置

  • Exchange: dlx.exchange(自定义的名字)
  • queue: dlx.queue(自定义的名字)
  • routingkey: #(#表示任何routingkey出现死信都会被路由过来)
  • 然后正常的声明交换机、队列、绑定,只是我们在队列上加上一个参数:arguments.put(“x-dead-letter-exchange”,“dlx.exchange”);
集群

按照目前的发展趋势,一个不支持集群的中间件基本上是不会有市场的;rabbitmq 也是支持集群的,下面简单的介绍一下常见的 4 种集群架构模式

  • 主备模式

    • 主节点提供读写,备用节点不提供读写。如果主节点挂了,就切换到备用节点,原来的备用节点升级为主节点提供读写服务,当原来的主节点恢复运行后,原来的主节点就变成备用节点
  • 远程模式

    • 远程模式可以实现双活的一种模式,简称 shovel 模式,所谓的 shovel 就是把消息进行不同数据中心的复制工作,可以跨地域的让两个 MQ 集群互联,远距离通信和复制。
    • Shovel 就是我们可以把消息进行数据中心的复制工作,我们可以跨地域的让两个 MQ 集群互联。
  • 镜像模式

    • 非常经典的 mirror 镜像模式,保证 100% 数据不丢失。在实际工作中也是用得最多的,并且实现非常的简单,一般互联网大厂都会构建这种镜像集群模式。
      在这里插入图片描述
    • 如上图,用 KeepAlived 做了 HA-Proxy 的高可用,然后有 3 个节点的 MQ 服务,消息发送到主节点上,主节点通过 mirror 队列把数据同步到其他的 MQ 节点,这样来实现其高可靠
  • 多活模式

    • 也是实现异地数据复制的主流模式,因为 shovel 模式配置比较复杂,所以一般来说,实现异地集群的都是采用这种双活 或者 多活模型来实现的。这种模式需要依赖 rabbitMQ 的 federation 插件,可以实现持续的,可靠的 AMQP 数据通信,多活模式在实际配置与应用非常的简单
    • rabbitMQ 部署架构采用双中心模式(多中心),那么在两套(或多套)数据中心各部署一套 rabbitMQ 集群,各中心的 rabbitMQ 服务除了需要为业务提供正常的消息服务外,中心之间还需要实现部分队列消息共享。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值