本篇博客思路来自于:https://www.cnblogs.com/xzxj/p/6534998.html,感谢作者
蓝桥杯的题,很经典的题
1.将中缀表达式转换为后缀表达式的方法:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从左至右扫描中缀表达式;
(3) 遇到操作数时,将其压入S2,这里由于运算数可能大于10,所以如果数字后面一个符号是运算符,则将‘#’入S2栈充当分割线;
(4) 遇到运算符时有三种情况:
(4-1) 三种情况下直接入S1栈①S1为空②运算符为‘(’③运算符优先级比S1栈顶运算符的高;
(4-2)如果右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
(4-3) 若运算符优先级小于或等于S1栈顶运算符的优先级,则依次弹出S1栈顶元素,直到运算符的优先级大于S1栈顶运算符优先级;
(6) 重复步骤(2)至(5),直到表达式的最右边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式。
运算符优先级: 左括号>(乘=除)>(加=减)>右括号 为了编程方便假定右括号优先级最小。
例:将 1 + ( ( 23 + 34 ) * 5 ) - 6转化为中缀表达式
所以计算结果为:1 # 2 3 # 3 4 # + 5 # * + 6 # -
2.后缀表达式计算方法:
(1)定义一个int栈S3,定义一个整形数组num用来存储大于10的数字便于计算,从左至右扫描表达式。
(2)遇到数字时:
(2-1)若数字后面一个元素不是#(数字后面只可能是#或数字)则将数字字符转化为数字存在num[ ]数组中;
(2-2)若数字后面一个元素是#,将num数组中保存的数字算出来并压入S3栈中。
(3)遇到运算符时,弹出S3栈顶的两个数,用运算符对它们做相应的计算(次顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
例如后缀表达式“1 # 2 3 # 3 4 # + 5 # * + 6 # -”:
#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
int bb0(int a,int b,char c)
{
if(c=='+')
return a+b;
if(c=='-')
return a-b;
if(c=='*')
return a*b;
if(c=='/')
return a/b;
}
void bb1(char a[105],char b[105],char c[100])
{
int k=0,l=0,flag=0;
for(int i=0;a[i]!='\0';i++)
{
if(a[i]>='0'&&a[i]<='9')
{
b[k++]=a[i];
if(a[i+1]<'0'||a[i+1]>'9')
b[k++]='#';
}
else if(a[i]==')')
{
while(c[--l]!='(')
{
b[k++]=c[l];
}
}
else
{
if(l>0)
{
if(a[i]=='+'||a[i]=='-')
{
if(c[l-1]!='(')
{
b[k++]=c[--l];
}
}
if(a[i]=='*'||a[i]=='/')
{
if(c[i-1]=='*'||c[i-1]=='/')
b[k++]=c[--l];
}
}
c[l++]=a[i];
}
}
while(l>0)
{
b[k++]=c[--l];
}
b[k]='\0';
}
void bb2(char b[105],int d[50])
{
int c=0,l=0;
for(int i=0;b[i]!='\0';i++)
{
if(b[i]<='9'&&b[i]>='0')
{
c=c*10+(b[i]-'0');
}
else if(b[i]=='#')
{
d[l++]=c;
c=0;
}
else
{
d[l-2]=bb0(d[l-2],d[l-1],b[i]);
l=l-1;
}
}
}
int main()
{
char a[105];
char b[105]={' '};
char c[100]={' '};
int d[50];
cin>>a;
bb1(a,b,c);
bb2(b,d);
cout<<d[0]<<endl;
return 0;
}
(C++,使用数据结构中的栈实现)
- #include<iostream>
- #include<cstring>
- #include<stack>
- #include<algorithm>
- #include<cmath>
- using namespace std;
- stack<char> s1,s2;
- stack<int> s3;
- char ch[150]={0};//用来存表达式
- int num[11];//用来暂时存数字
- int priority(char ch)//用于比较字符优先级
- {
- if(ch==')'||ch=='(') return 1;
- if(ch=='+'||ch=='-') return 2;
- if(ch=='*'||ch=='/') return 3;
- }
- int Scal(int x,int y,char ope)//两个数的运算
- {
- if(ope=='+') return x+y;
- if(ope=='-') return x-y;
- if(ope=='*') return x*y;
- if(ope=='/'&&y!=0) return x/y;
- }
- void Transform(int n)//将中缀表达式转化为后缀表达式
- {
- int k=0;
- for(int i=0;i<n;i++)
- {
- if(ch[i]>='0'&&ch[i]<='9')//当是数字的情况
- {
- if(i+1<n&&(ch[i+1]<'0'||ch[i+1]>'9')||i==n-1)//当是最后一个数字,或下一个元素是运算符
- {
- s2.push(ch[i]);
- s2.push('#');
- }
- else
- s2.push(ch[i]);
- }
- else
- {
- if(s1.empty()||ch[i]=='('||priority(ch[i])>priority(s1.top()))//当是运算符,有3种情况直接入栈
- s1.push(ch[i]);
- else if(ch[i]==')')//当是右括号的情况
- {
- while(s1.top()!='(')
- {
- s2.push(s1.top());
- s1.pop();
- }
- s1.pop();
- }
- else//当运算符优先级小于或等于S1栈顶运算符的优先级
- {
- while(!s1.empty()&&priority(ch[i])<=priority(s1.top())&&s1.top()!='(')//这里还要注意两个界限
- {
- s2.push(s1.top());
- s1.pop();
- }
- s1.push(ch[i]);
- }
- }
- }
- while(!s1.empty())//当表达式结束
- {
- s2.push(s1.top());
- s1.pop();
- }
- while(!s2.empty()) //将栈内元素放回S2中
- {
- ch[k++]=s2.top();
- s2.pop();
- }
- reverse(ch,ch+k);//将ch[]反向
- ch[k]=0;
- }
- int Cal(int n)//后缀表达式计算
- {
- int x,y,tmp=0,k=0;
- for(int i=0;i<n;i++)
- {
- if(ch[i]=='#')//是#直接跳过
- continue;
- else if(ch[i]=='+'||ch[i]=='-'||ch[i]=='*'||ch[i]=='/')//是运算符弹出栈顶两元素计算后放回栈
- {
- x=s3.top();
- s3.pop();
- y=s3.top();
- s3.pop();
- x=Scal(y,x,ch[i]);
- s3.push(x);
- }
- else//是数字字符
- {
- if(ch[i+1]=='#')//下一个元素是#
- {
- num[k++]=ch[i]-'0';
- for(int i=0;i<k;i++)
- tmp+=(num[i]*(int)pow(10,k-i-1));
- s3.push(tmp);
- tmp=0;
- k=0;
- }
- else//下一个元素不是#
- {
- num[k++]=ch[i]-'0';
- }
- }
- }
- return s3.top();
- }
- int main()
- {
- gets(ch);
- Transform(strlen(ch));
- cout<<Cal(strlen(ch))<<endl;
- return 0;
- }