表达式求值

本篇博客思路来自于:https://www.cnblogs.com/xzxj/p/6534998.html,感谢作者

蓝桥杯的题,很经典的题

问题描述
  输入一个只包含加减乖除和括号的合法表达式,求表达式的值。其中除表示整除。
输入格式
  输入一行,包含一个表达式。
输出格式
  输出这个表达式的值。
样例输入
1-2+3*(4-5)
样例输出
-4
数据规模和约定
  表达式长度不超过100,表达式运算合法且运算过程都在int内进行。
 
讲了先转换为 中缀表达式,在转换为后缀表达式,主要是入栈和出栈):

1.将中缀表达式转换为后缀表达式的方法:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从左至右扫描中缀表达式;
(3) 遇到操作数时,将其压入S2,这里由于运算数可能大于10,所以如果数字后面一个符号是运算符,则将‘#’入S2栈充当分割线;
(4) 遇到运算符时有三种情况:
(4-1) 三种情况下直接入S1栈①S1为空②运算符为‘(’③运算符优先级比S1栈顶运算符的高;
(4-2)如果右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
(4-3) 若运算符优先级小于或等于S1栈顶运算符的优先级,则依次弹出S1栈顶元素,直到运算符的优先级大于S1栈顶运算符优先级;
(6) 重复步骤(2)至(5),直到表达式的最右边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式。

运算符优先级: 左括号>(乘=除)>(加=减)>右括号  为了编程方便假定右括号优先级最小。

例:将 1 + ( ( 23 + 34 ) * 5 ) - 6转化为中缀表达式

 

所以计算结果为:1 # 2 3 # 3 4 # + 5 # * + 6 # -

 

2.后缀表达式计算方法:

(1)定义一个int栈S3,定义一个整形数组num用来存储大于10的数字便于计算,从左至右扫描表达式。

(2)遇到数字时:

(2-1)若数字后面一个元素不是#(数字后面只可能是#或数字)则将数字字符转化为数字存在num[ ]数组中;

(2-2)若数字后面一个元素是#,将num数组中保存的数字算出来并压入S3栈中。

(3)遇到运算符时,弹出S3栈顶的两个数,用运算符对它们做相应的计算(次顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。

例如后缀表达式“1 # 2 3 # 3 4 # + 5 # * + 6 # -”:

代码实现:(c++版)

#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;


int bb0(int a,int b,char c)
{
    if(c=='+')
        return a+b;
    if(c=='-')
        return a-b;
    if(c=='*')
        return a*b;
    if(c=='/')
        return a/b;
}


void bb1(char a[105],char b[105],char c[100])
{
    int k=0,l=0,flag=0;
    for(int i=0;a[i]!='\0';i++)
    {
        if(a[i]>='0'&&a[i]<='9')
        {
            b[k++]=a[i];
            if(a[i+1]<'0'||a[i+1]>'9')
                b[k++]='#';
        }    
        else if(a[i]==')')
        {
            while(c[--l]!='(')
            {
                b[k++]=c[l];
            }    
        }
        else
        {
            if(l>0)
            {
                if(a[i]=='+'||a[i]=='-')
                {
                    if(c[l-1]!='(')
                    {
                        b[k++]=c[--l];
                    }
                }
                if(a[i]=='*'||a[i]=='/')
                {
                    if(c[i-1]=='*'||c[i-1]=='/')
                        b[k++]=c[--l];
                }
            }
            c[l++]=a[i];
        }
    }    
    while(l>0)
    {
        b[k++]=c[--l];
    }
    b[k]='\0';
}


void bb2(char b[105],int d[50])
{
    int c=0,l=0;
    for(int i=0;b[i]!='\0';i++)
    {
        if(b[i]<='9'&&b[i]>='0')
        {
            c=c*10+(b[i]-'0');
        }
        else if(b[i]=='#')
        {
            d[l++]=c;
            c=0;        
        }
        else
        {
            d[l-2]=bb0(d[l-2],d[l-1],b[i]);
            l=l-1;
        }        
    }
}


int main()
{
    char a[105];
    char b[105]={' '};
    char c[100]={' '};
    int d[50];
    cin>>a;
    bb1(a,b,c);
    bb2(b,d);
    cout<<d[0]<<endl;
    return 0;
}


(C++,使用数据结构中的栈实现)

  1. #include<iostream>      
  2. #include<cstring>      
  3. #include<stack>      
  4. #include<algorithm>   
  5. #include<cmath>      
  6. using namespace std;      
  7.       
  8. stack<char> s1,s2;      
  9. stack<int> s3;      
  10. char ch[150]={0};//用来存表达式      
  11. int num[11];//用来暂时存数字      
  12.             
  13. int priority(char ch)//用于比较字符优先级      
  14. {      
  15.     if(ch==')'||ch=='('return 1;      
  16.     if(ch=='+'||ch=='-'return 2;      
  17.     if(ch=='*'||ch=='/'return 3;           
  18. }      
  19.            
  20. int Scal(int x,int y,char ope)//两个数的运算      
  21. {      
  22.     if(ope=='+'return x+y;      
  23.     if(ope=='-'return x-y;      
  24.     if(ope=='*'return x*y;      
  25.     if(ope=='/'&&y!=0) return x/y;      
  26. }      
  27.       
  28. void Transform(int n)//将中缀表达式转化为后缀表达式      
  29. {      
  30.     int k=0;      
  31.     for(int i=0;i<n;i++)      
  32.     {      
  33.         if(ch[i]>='0'&&ch[i]<='9')//当是数字的情况      
  34.         {      
  35.             if(i+1<n&&(ch[i+1]<'0'||ch[i+1]>'9')||i==n-1)//当是最后一个数字,或下一个元素是运算符      
  36.             {      
  37.                 s2.push(ch[i]);      
  38.                 s2.push('#');      
  39.             }      
  40.             else      
  41.                 s2.push(ch[i]);      
  42.         }      
  43.         else      
  44.         {      
  45.             if(s1.empty()||ch[i]=='('||priority(ch[i])>priority(s1.top()))//当是运算符,有3种情况直接入栈      
  46.                 s1.push(ch[i]);                   
  47.             else if(ch[i]==')')//当是右括号的情况      
  48.             {      
  49.                 while(s1.top()!='(')      
  50.                 {      
  51.                     s2.push(s1.top());        
  52.                     s1.pop();      
  53.                 }      
  54.                 s1.pop();      
  55.             }      
  56.             else//当运算符优先级小于或等于S1栈顶运算符的优先级    
  57.             {      
  58.                 while(!s1.empty()&&priority(ch[i])<=priority(s1.top())&&s1.top()!='(')//这里还要注意两个界限      
  59.                 {      
  60.                     s2.push(s1.top());      
  61.                     s1.pop();                 
  62.                 }      
  63.                 s1.push(ch[i]);       
  64.             }         
  65.         }      
  66.       
  67.     }      
  68.     while(!s1.empty())//当表达式结束      
  69.     {      
  70.         s2.push(s1.top());      
  71.         s1.pop();             
  72.     }      
  73.     while(!s2.empty()) //将栈内元素放回S2中      
  74.     {      
  75.         ch[k++]=s2.top();      
  76.         s2.pop();         
  77.     }      
  78.     reverse(ch,ch+k);//将ch[]反向      
  79.     ch[k]=0;      
  80. }      
  81.       
  82. int Cal(int n)//后缀表达式计算      
  83. {      
  84.     int x,y,tmp=0,k=0;      
  85.     for(int i=0;i<n;i++)      
  86.     {      
  87.         if(ch[i]=='#')//是#直接跳过      
  88.             continue;      
  89.         else if(ch[i]=='+'||ch[i]=='-'||ch[i]=='*'||ch[i]=='/')//是运算符弹出栈顶两元素计算后放回栈      
  90.         {      
  91.             x=s3.top();      
  92.             s3.pop();      
  93.             y=s3.top();      
  94.             s3.pop();      
  95.             x=Scal(y,x,ch[i]);      
  96.             s3.push(x);      
  97.         }      
  98.         else//是数字字符      
  99.         {      
  100.             if(ch[i+1]=='#')//下一个元素是#      
  101.             {      
  102.                 num[k++]=ch[i]-'0';      
  103.                 for(int i=0;i<k;i++)      
  104.                     tmp+=(num[i]*(int)pow(10,k-i-1));      
  105.                 s3.push(tmp);      
  106.                 tmp=0;      
  107.                 k=0;                      
  108.             }      
  109.             else//下一个元素不是#      
  110.             {      
  111.                 num[k++]=ch[i]-'0';       
  112.             }         
  113.         }      
  114.     }      
  115.     return s3.top();      
  116. }      
  117.       
  118. int main()      
  119. {      
  120.     gets(ch);      
  121.     Transform(strlen(ch));      
  122.     cout<<Cal(strlen(ch))<<endl;      
  123.     return 0;      
  124. }      
两种方法的实现思路都是一样的,都是将中缀表达式转化为后缀表达式,然后再借用栈地特性进行计算。很经典的题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值