qy20115549的博客

世上成功的方式可能有很多种,但失败的方式就只有一种,那就是半途而废。...

深度学习笔记--多层感知器以及BP算法

简介 多层感知器,是指包含1个或多个隐层的前馈神经网络。 前馈神经网络的特点: 第0层为输入层,最后一层为输出层,中间层为隐层。 整个网络无反馈,信号从输入层向输出层单向传播,整个网络为有向无环图。 激活函数多使用连续非线性函数,如logistic函数。 3.激活函数多使用连续非线性函数,如l...

2019-01-15 21:54:53

阅读数:1857

评论数:0

深度学习笔记--单层感知机原理及代码实现

python3实现简单的感知器 下面使用python3实现or运算: #-*- coding:utf-8 -*- from functools import reduce class Perceptron(object): def __...

2019-01-11 10:31:29

阅读数:87

评论数:0

识别和追踪主题层次的影响力者(来自2018 Machine Learning 论文学习笔记)

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 。 以下内容是个人的论文阅读笔记,内容可能有不到之处,欢迎交流。 未经本人允许禁止转载。 文章目录论文来源论文学习笔记 论文来源 来自于2018年Machine Learning期刊上的论文。Su S...

2018-11-05 15:33:00

阅读数:676

评论数:0

2018 A Sparse Topic Model for Extracting Aspect-Specific Summaries from Online Reviews 稀疏主题模型学习笔记

论文来源 文章介绍 模型及推理 关于源码 论文来源 Rakesh V, Ding W, Ahuja A, et al. A Sparse Topic Model for Extracting Aspect-Specific Summaries from Online Reviews...

2018-07-09 17:22:56

阅读数:494

评论数:0

面向消费者的自动文本分析(Automated Text Analysis for Consumer Research) 2017 JCR 论文阅读

文章简介 Humphreys A, Jen-Hui Wang R. Automated Text Analysis for Consumer Research[J]. Journal of Consumer Research, 2017. 来自于管理类顶刊 Journal of Consume...

2018-06-14 15:15:02

阅读数:491

评论数:0

LSTM模型结合LDA对序列性文本建模 阅读笔记 2017 ICML

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 内容可能有不到之处,欢迎交流。 未经本人允许禁止转载。 文章来源 Zaheer M, Ahmed A, Smola A J. Latent LSTM Allocation: Joint Cluster...

2018-06-04 10:40:26

阅读数:850

评论数:0

极大似然估计求解多项式分布参数

原因今天晚上,老师在看LDA数学八卦的时候,问我一个问题,如下图所示: 这个多项式分布的参数,采用极大估计是怎么求的呢?当时想了想还真不知道,于是在网上找了资料,学习了一下,特此记录。公式推导很多情况下,假定一个变量XX有kk个状态,其中k>2k>...

2018-05-07 22:16:46

阅读数:1328

评论数:2

主题模型聚类匹配2018TKDE阅读笔记(Topic Models for Unsupervised Cluster Matching)

论文来源 Iwata T, Hirao T, Ueda N. Topic Models for Unsupervised Cluster Matching[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(4): ...

2018-04-21 17:16:37

阅读数:833

评论数:0

三层Dirichlet 过程(非参贝叶斯模型)-来自Machine Learning

文章来源Nguyen V A, Boyd-Graber J, Resnik P, et al. Modeling topic control to detect influence in conversations using nonparametric topic models[J]. Mach...

2018-04-17 09:48:29

阅读数:502

评论数:0

Pseudo-document-based Topic Model(基于伪文档的主题模型)的理解以及源码解读

论文来源Zuo Y, Wu J, Zhang H, et al. Topic modeling of short texts: A pseudo-document view[C]//Proceedings of the 22nd ACM SIGKDD international conferenc...

2018-04-10 10:49:38

阅读数:321

评论数:0

梯度下降、牛顿法、拟牛顿法详细介绍

最近,在看论文的时候,优化方法使用的是L-BFGS算法,所以我花了几天时间,看了梯度下降、牛顿法和逆牛顿法的原理及相关源码。以下我个人笔记,仅供大家参考。 内容

2018-03-31 17:44:07

阅读数:353

评论数:0

LFDMM源码剖析(融入词向量的概率图模型)

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 内容可能有不到之处,欢迎交流。 未经本人允许禁止转载。 论文来源 Nguyen D Q, Billingsley R, Du L, et al. Improving topic models wit...

2018-03-24 10:40:58

阅读数:643

评论数:0

Dirichlet Process和Hierarchical Dirichlet Process的理解(PPT)

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 内容可能有不到之处,欢迎交流。 未经本人允许禁止转载。

2018-03-23 09:59:48

阅读数:591

评论数:0

蒙特卡罗方法采样算法

蒙特卡罗方法采样算法  蒙特卡罗方法(Monte Carlo Simulation)是一种随机模拟(或者统计模拟)方法。  给定统计样本集,如何估计产生这个样本集的随机变量概率密度函数,是我们比较熟悉的概率密度估计问题。 求解概率密度估计问题的常用方法是最大似然估计、最大后验估计等。但是,我们思...

2018-03-21 10:00:58

阅读数:2891

评论数:2

Gaussian LDA(高斯LDA)简介

论文来源Das R, Zaheer M, Dyer C. Gaussian lda for topic models with word embeddings[C]//Proceedings of the 53rd Annual Meeting of the Association for Com...

2018-03-12 16:21:12

阅读数:705

评论数:0

主题模型结合词向量模型(Improving Topic Models with Latent Feature Word Representations)

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 内容可能有不到之处,欢迎交流。 未经本人允许禁止转载。论文来源Nguyen D Q, Billingsley R, Du L, et al. Improving topic models with late...

2018-03-07 20:17:50

阅读数:1198

评论数:0

基于狄利克雷-多项式分布做文档聚类代码(dirichlet multinomial mixture model)

论文来源Yin J, Wang J. A dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 20th ACM SIGKDD internationa...

2018-03-05 19:35:04

阅读数:891

评论数:0

Dirichlet Multinomial Mixture Model做短文本聚类

论文来源Yin J, Wang J. A dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 20th ACM SIGKDD internationa...

2018-03-03 11:31:16

阅读数:825

评论数:0

对比关系生成模型(Comparative Relation Generative Model)

文章来源 Tkachenko M, Lauw H W. Comparative Relation Generative Model[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4): 771-783. 20...

2018-01-26 16:50:30

阅读数:409

评论数:0

Indian Buffet Process(印度自助餐过程)介绍

简介无监督学习的目的是从观测数据中,发掘潜在的结构(latent structure)。无监督学习算法的一个关键问题是如何确定潜在结构的数目,如聚类中的类的数目,变量的数目等。以聚类为例,如果能够基于数据之间的内在关系,自动学习类的数目,要比通过经验设置一个数目要好的多。相比参数化的贝叶斯模型,非...

2017-11-14 17:30:43

阅读数:1598

评论数:0

提示
确定要删除当前文章?
取消 删除