视野争夺
小Q在进行一场竞技游戏,这场游戏的胜负关键就在于能否能争夺一条长度为L的河道,即可以看作是[0,L]的一条数轴。这款竞技游戏当中有n个可以提供视野的道具−真视守卫,第i个真视守卫能够覆盖区间[xi,yi]。现在小Q想知道至少用几个真视守卫就可以覆盖整段河道。
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 256M,其他语言512M
输入描述:
输入包括n+1行。
第一行包括两个正整数n和L(1<=n<=105,1<=L<=109)
接下来的n行,每行两个正整数xi,yi(0<=xi<=yi<=109),表示第i个真视守卫覆盖的区间。
输出描述:
一个整数,表示最少需要的真视守卫数量, 如果无解, 输出-1。
输入例子:
4 6
3 6
2 4
0 2
4 7
输出例子:
3
思路:
最开始的想法是使用深度优先搜索,设置left和right变量来表示每一层搜索中真视守卫覆盖的范围,如果下一个选择的真视守卫的范围超出了当前的覆盖范围,则替换left和right值。问题在于当下一个选择的真视守卫的范围与当前的覆盖范围没有交集时,此时利用left和right无法表示新的范围,因为覆盖范围被截断为两部分。
换个思路:首先将每一个真视守卫覆盖的范围进行排序,按照真视守卫左端点的大小升序排列。初始覆盖范围是(0,0),然后从小到大对真视守卫进行遍历,找到下一个真视守卫,其左端点在已确定的覆盖范围中,并且需要满足:在所有的真视守卫中(左端点在已确定的覆盖范围中),其右端点最大。然后继续向后寻找。
要点:
1.对多维数组的排序
代码:
**
#include <iostream>
#include <vector>
#