BZOJ3295/CQOI2011 题解(CDQ分治)

本文介绍了一种算法问题,即在给定序列中动态地删除元素并统计逆序对数量的方法。通过将删除操作转化为插入操作,利用CDQ分治策略解决三维偏序问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目如下:

Description

对于序列A,它的逆序对数定义为满足 i< j,且A i>A j的数对( i, j)的个数。给1到 n的一个排列,按照某种顺序依次删除 m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Input

输入第一行包含两个整数 nm,即初始元素的个数和删除的元素个数。以下 n行每行包含一个1到 n之间的正整数,即初始排列。以下 m行每行一个正整数,依次为每次删除的元素。
 

Output

 
输出包含 m行,依次为删除每个元素之前,逆序对的个数。

HINT

N<=100000 M<=50000


为了方便,将删除操作倒着执行,变成插入操作。

这样就变成每次插入一个元素,求有多少x比它小,值比它大的数字,和有多少x比它大,值比它小的数字。

有x,y,t三个维度。y表示x位置的数字,t表示这个数字是何时被插入进来的。

这是一个三维偏序问题,可以用树套树或者CDQ分治来做。这里先尝试CDQ分治。

我们按x维度进行排序(这个读入过程中就直接排好了),对t维度进行分治。

分治过程中,我们要处理所有t<=mid的数对t>=mid+1的答案的影响。

为了降低复杂度,首先把所有t<=mid的数都放在数组的前半部分,t>=mid+1的都放在后半部分,两半部分以内的x依然是有序的。

对于每个t>=mid+1,找到x比它更小,y比它更大的数,在树状数组上更新,然后查询,找x比它更大,y比它更小的数,同样这么做。

然后递归处理(l,mid),(mid+1,r)即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#define ll long long
using namespace std;
int n,m;
ll tree[100111];
int cnt=0;
ll ans[100010],ansl[100010],ansr[100010]; 
struct node
{
	ll x,y,t;
	node(){t=0;}
}a[100111],temp[100111];
int antiid[100111];
void add(int x,int k)
{
	for(x;x<=n;x+=x&-x)
		tree[x]+=k;
}
int query(int x)
{
	ll res=0;
	for(x;x>0;x-=x&-x)
		res+=tree[x];
	return res;
}
void cdq(int l,int r)
{
	//cout<<l<<" "<<r<<endl;
	if(l==r)return;
	int mid=l+r>>1,lp=l,rp=mid+1;
	for(int i=l;i<=r;++i)
		if(a[i].t<=mid)temp[lp++]=a[i];
		else temp[rp++]=a[i];
	for(int i=l;i<=r;++i)
		a[i]=temp[i];
	//对于(维度t)右边的每一个点,作为询问来处理
	//找到所有x更小,y更大的插入操作 
	int j=l;
	for(int i=mid+1;i<=r;++i)
	{
		for(;j<=mid&&(a[j].x<a[i].x);++j)add(a[j].y,1);
		//j-l表示所有x更小的,query表示有几个x更小,且y更小的
		ansl[a[i].t]+=(j-l)-query(a[i].y);
	}
	for(int i=l;i<j;++i)add(a[i].y,-1); 
	//找到所有x更大,y更小的插入操作 
	j=mid;
	for(int i=r;i>=mid+1;--i)
	{
		for(;j>=l&&(a[j].x>a[i].x);--j)add(a[j].y,1);
		//query表示有几个x更大,且y更小的
		ansr[a[i].t]+=query(a[i].y-1);
	}
	for(int i=j+1;i<=mid;++i)add(a[i].y,-1);
	cdq(l,mid);cdq(mid+1,r);
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i)
	{
		scanf("%d",&a[i].y);
		antiid[a[i].y]=a[i].x=i;
	}
	int tim=n;	
	for(int i=1;i<=m;++i)
	{
		int k;
		scanf("%d",&k);
		a[antiid[k]].t=tim--;
	}
	for(int i=1;i<=n;++i)
		if(!a[i].t)a[i].t=tim--;
	cdq(1,n);
	for(int i=1;i<=n;++i)
		ans[i]=ans[i-1]+ansl[i]+ansr[i];
	for(int i=n;i>=n-m+1;--i)
		printf("%lld\n",ans[i]);
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值