
AI-大模型
文章平均质量分 80
AI-大模型相关
qyhua
专业软件开发。
展开
-
用 PyTorch 从零实现简易GPT(Transformer 模型)
本文详细介绍了如何使用 PyTorch 从零实现一个简易的中文 Transformer 模型。文章从数据预处理开始,逐步拆解了模型的各个核心组件,包括词嵌入、位置编码、编码器堆叠及线性投影等。通过 Mermaid 流程图直观展示了整体架构,帮助读者系统掌握大模型的原理与实战。文章还提供了完整的代码示例,涵盖了数据准备、模型定义、训练与推理的全过程,适合零基础读者理解并复现 Transformer 模型。原创 2025-05-17 00:51:48 · 773 阅读 · 0 评论 -
通义千问最新一代大语言模型Qwen3发布了
Qwen3是阿里云推出的新一代大规模语言模型(LLM),基于混合专家架构(MoE)和动态注意力机制设计,支持多模态输入、长上下文处理及复杂任务推理。本文将从核心特性性能表现部署方案到实战体验全面解析Qwen3的技术亮点,并结合Ollama工具演示其轻量化部署效果。Qwen3标志着大语言模型进入“混合推理时代”,通过灵活架构设计和高效资源利用,为学术研究和工业应用提供了全新范式。结合Ollama工具,开发者可轻松实现高性能模型的本地化部署,加速AI技术普及。原创 2025-04-29 10:01:08 · 1246 阅读 · 0 评论 -
window平台离线安装 F5-TTS:从源码安装到模型部署的完整教程
本教程详细介绍了如何离线安装 F5-TTS,并配置与运行模型。通过下载源码、安装依赖、获取并配置模型文件,你可以成功地在没有网络的环境中使用 F5-TTS 进行文本到语音的转换。在遇到问题时,按照常见问题解决方案进行排查和修复。希望本教程能帮助你顺利完成 F5-TTS 的离线部署!原创 2025-04-24 12:05:46 · 1026 阅读 · 0 评论 -
本地部署 DeepSeek 教程
春节期间,DeepSeek 模型在 AI 社区引起了广泛关注。节后上班的第一天尝试在本地电脑安装与使用这个模型。基于 Ollama 和 Chatbox,在个人电脑上快速部署和使用 DeepSeek R1。建议使用。可以选择或。建议使用或。请根据电脑配置您选择的模型版本。下载完成后,您可以在命令行中与模型进行交互。访问,根据您的操作系统下载并安装对应版本。当前最新的版本是 0.10.4,windows平台下载:下载后与普通程序一样安装即可。原创 2025-02-06 17:31:59 · 1085 阅读 · 0 评论 -
一个优秀的开源ChatGpt外壳项目(lobe-chat)
开源、现代化设计的 ChatGPT/LLMs 聊天应用与开发框架支持语音合成、多模态、可扩展的插件系统,一键拥有你自己的 ChatGPT/Gemini/Ollama 应用。原创 2024-03-20 15:52:04 · 1733 阅读 · 0 评论 -
打造本地GPT专业领域知识库AnythingLLM+Ollama
如果你觉得openai的gpt没有隐私,或者需要离线使用gpt,还是打造专业领域知识,可以借用AnythingLLM+Ollama轻松实现本地GPT.原创 2024-05-13 17:34:24 · 3584 阅读 · 0 评论 -
拉取模型数据 pass a token having permission to this repo either by logging in with `huggingface-cli login`
huggingface.co 拉取模型数据,授权同意后,再次运行项目即可正常拉取模型原创 2024-07-04 17:10:12 · 1627 阅读 · 0 评论 -
PEFT LoRA 介绍(LoRA微调使用的参数及方法)
官网简介如下图:翻译过来是:低秩自适应(LoRA)是一种PEFT方法,它将一个大矩阵在注意层分解成两个较小的低秩矩阵。这大大减少了需要微调的参数数量。说的只是针对注意力层,其实我自己平时微调操作注意力层+多层感知机层,感觉所有层都可以微调。在阿里的千问开源的模型文档上也看到微调的并不只有注意力层,不知道微调加入其它层效果会不会更好?原创 2024-07-26 13:18:05 · 1954 阅读 · 0 评论 -
langchain框架轻松实现本地RAG
RAG(Retrieval-Augmented Generation)是一种结合了检索和生成模型的方法,主要用于解决序列到序列的任务,如问答、对话系统、文本摘要等。它的核心思想是通过从大量文档中检索相关信息,然后利用这些信息来增强生成模型的输出。原创 2024-07-04 21:44:24 · 2572 阅读 · 10 评论 -
最简单的本地大模型应用,普通用户也可以轻松安装使用(LM studio)
LM Studio是一个功能丰富的平台,旨在帮助用户轻松地与最新的语言模型(LLM)进行交互和实验,无需互联网连接即可在个人设备上运行。这些功能使得LM Studio成为研究者、开发者和对自然语言处理技术感兴趣的个人的理想工具,特别是在需要高性能和隐私保护的应用场景中。得益于llama.cpp项目的基础工作,LM Studio能够实现高效且资源友好的模型运行环境。原创 2024-07-15 15:05:13 · 1878 阅读 · 2 评论 -
本地GPT-window平台 搭建ChatGLM3-6B
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,新一代开源模型已发布,拥有10B以下最强的基础模型,支持工具调用(Function Call)、代码执行(Code Interpreter)、Agent 任务等功能,结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。原创 2024-06-12 12:07:19 · 1324 阅读 · 0 评论 -
在window平台大模型LoRA微调实战(完整代码带数据)
本次微调最开始是打算使用Qwen/Qwen-1_8B-Chat的模型作为微调对象,调试过程中不断报GPU显存不够,该模型需要的显存超过12G,因此后面改用 Qwen/Qwen1.5-0.5B-Chat 模型。这里的注意力投影与多层感知的层作是:"c_attn", "c_proj", "w1", "w2"从上面对比图可以看出,微调后的回答的答案与模型合并的模型都差不多效果,比较准确。微调前回复答案明显多了一些不像关键字的没有微调后的好,说明确实有效果。方法保存微调后的模型到指定目录。我们调整大模型哪些层,原创 2024-07-24 18:47:24 · 3625 阅读 · 1 评论 -
简单实现一个本地ChatGPT web服务(langchain框架)
简单实现一个本地ChatGPT 服务,用到langchain框架,fastapi,并且本地安装了ollama。服务端非常简单,后面再写个前端对接一下即可方便使用。原创 2024-07-11 10:43:05 · 580 阅读 · 0 评论 -
代码生成-CodeGeeX2本地部署体验
CodeGeeX2 是多语言代码生成模型) 的第二代模型。不同于一代 CodeGeeX(完全在国产华为昇腾芯片平台训练) ,CodeGeeX2 是基于架构加入代码预训练实现,得益于 ChatGLM2 的更优性能,CodeGeeX2 在多项指标上取得性能提升(+107% > CodeGeeX;原创 2024-06-13 18:09:52 · 1827 阅读 · 0 评论