哲学家就餐问题(死锁)

本文主要讲述死锁的一个经典案例—哲学家就餐问题,并对该问题进行修复。

1. 问题描述

哲学家就餐问题

看上图,有五位哲学家,每天循环做两件事:思考,吃面。吃面时每人面前都有一个盘子,盘子左边和右边都有一根筷子,他们在吃面之前需要先拿起左边的筷子再拿起右边的筷子,有了一双筷子就可以吃面了。

具体逻辑:

  • 哲学家在吃面之前一般先思考一段时间
  • 思考之后,先拿起左手的筷子
  • 然后拿起右手的筷子
  • 如果筷子被人使用了,那就等别人用完
  • 吃完后,依次把筷子放回原位

逻辑的伪代码如下:

while(true){
    //思考
    think();
    //拿起左边的筷子
    pick_up_left_fork();
    //拿起右边的筷子
    pick_up_right_fork();
    //吃饭
    eat();
    //放下右边的筷子
    put_down_left_fork();
    //放下左边的筷子
    put_down_right_fork();
}

**分析:**如果每个哲学家同时都拿着左手的筷子,并在等右边的筷子,就会有死锁的风险。

2. 代码实现

代码展示如下:

public class Philosopher implements Runnable {

    private Object leftChopstick;
    private Object rightChopstick;

    public Philosopher(Object leftChopstick, Object rightChopstick) {
        this.leftChopstick = leftChopstick;
        this.rightChopstick = rightChopstick;
    }

    /**
     * 每个哲学家重复做的事就是:思考,拿筷子吃面
     */
    @Override
    public void run() {
        try {
            while (true) {
                doAction("思考中...");
                synchronized (leftChopstick) {
                    doAction("拿起左手的筷子...");
                    synchronized (rightChopstick) {
                        doAction("拿起右手的筷子...");
                        System.out.println("吃面");
                        doAction("放下右手的筷子...");
                    }
                    doAction("放下左手的筷子...");
                }
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private void doAction(String action) throws InterruptedException {
        System.out.println(Thread.currentThread().getName() + " " + action);
        Thread.sleep((long) (Math.random() * 10));
    }
}
public class DiningPhilosophers {
    public static void main(String[] args) {
        
        //五根筷子
        Object[] chopsticks = new Object[philosophers.length];
        for (int i = 0; i < chopsticks.length; i++) {
            chopsticks[i] = new Object();
        }
        //五个哲学家,创建5个线程,每个线程持有两把筷子锁
        for (int i = 0; i < philosophers.length; i++) {
            Object leftChopstick = chopsticks[i];
            Object rightChopstick = chopsticks[(i + 1) % chopsticks.length];
            Philosopher philosophers = new Philosopher(leftChopstick, rightChopstick);
            new Thread(philosophers, "哲学家" + (i + 1) + "号").start();
        }
    }
}

打印结果:

可以看到,五个哲学家最后都拿起了左边筷子,都在等右边筷子,就发生了死锁。

3. 解决哲学家就餐问题的4种方案

  • 服务员检查(避免策略):引入一个服务员协调,就是说当哲学家要拿起筷子的时候,先询问服务员能否拿起,服务员就会检查拿起筷子是否会有死锁的发生,不会的话就允许哲学家拿起筷子,相反如果可能会发生死锁就不让哲学家拿起筷子。
  • 改变一个哲学家拿叉子的顺序(避免策略):因为要发生死锁,一定是所有哲学家都拿起了左边的筷子,发生了死锁环路,但是假如有个哲学家不按照顺时针拿的话,就是说先拿右边筷子,这样就永远不会发生都在等右边筷子的死锁环路了。
  • 餐票(避免策略):就是说每个人吃饭前都要先拿到餐票才能拿筷子吃面,餐票总共只有4张,也就是说看肯定有一个人没有餐票,那么他就不能去拿筷子,那么其余的人就不会死锁,等他们吃完把餐票还回去之后,最后那个人才能吃面。
  • 领导调节(检测与恢复策略):并不是不让你发生死锁,而是等你死锁了,领导检测到了死锁发生(五个人都拿起了左边的筷子),就会命令其中一个人放下筷子,让别人先吃。

4. 针对第二个方案进行实现:改变一个哲学家拿筷子的顺序(代码演示)

public class DiningPhilosophers {

    public static void main(String[] args) {
        //五个哲学家
        Philosopher[] philosophers = new Philosopher[5];
        //五根筷子
        Object[] chopsticks = new Object[philosophers.length];
        for (int i = 0; i < chopsticks.length; i++) {
            chopsticks[i] = new Object();
        }
        for (int i = 0; i < philosophers.length; i++) {
            Object leftChopstick = chopsticks[i];
            Object rightChopstick = chopsticks[(i + 1) % chopsticks.length];
            // 修改点:这里我们将最后一个哲学家拿筷子的顺序反过来
            if (i == philosophers.length - 1) {
                philosophers[i] = new Philosopher(rightChopstick, leftChopstick);
            } else {
                philosophers[i] = new Philosopher(leftChopstick, rightChopstick);
            }
            new Thread(philosophers[i], "哲学家" + (i + 1) + "号").start();
        }
    }
}

打印结果:

程序会一直运行下去,不再发生死锁。

文章来源:哲学家就餐问题(死锁)

个人微信:CaiBaoDeCai

微信公众号名称:Java知者

微信公众号 ID: JavaZhiZhe

谢谢关注!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值