数论模板(未完成)

取模模板

inline ll add(ll a, ll b){return a+b>mod ? a+b-mod : a+b;}
inline ll sub(ll a, ll b){return a-b<0 ? a-b+mod : a-b;}
inline ll mul(ll a, ll b){return a*b%mod;}

快速幂&快速乘

inline ll P(ll a,ll b){ll c=1; while{if(b&1) c = mul(c,a); b>>=1; a=mul(a,a);} return c;}快速幂
inline ll P(ll a,ll b){ll c=0; while{if(b&1) c = add(c,a); b>>=1; a=add(a,a);} return c;}快速乘

逆元

#a在模mod意义下的逆元
inv[a] = P(a, mod-2);

组合数

void prep() {    
    fac[1] = 1;
    for (int i = 2; i < N; i++) 
        fac[i] = mul(fac[i-1], i);
    inv[N-1] = P(fac[N-1], mod-2);
    for (int i = N-1; i >= 0; i--) 
        inv[i] = mul(inv[i+1], i+1);
}
inline ll C(int n, int m){return mul(fac[n], mul(inv[m], inv[n-m]));}

丢番图方程

void exgcd(int a, int b, int &x, int &y) {
	if(b == 0) {x = 1; y = 0; return;}
	exgcd(b, a%b, x, y);
	int t = x; x = y; y = t - a/b*y;
}
x,y即为其中一组解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值