自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(163)
  • 收藏
  • 关注

原创 大数据处理之数据去重、TopN统计与倒排索引的Hadoop实现

2.Combine阶段的实现:编写实现自定义Combiner组建的类InvertedlindexCombiner。1.Map阶段的实现:编写实现Mapper组件的类InvertedlndexMapper。3.Reduce阶段实现:编写实现Reducer组件的类DedupReducer。2.Map阶段的实现:编写实现Mapper组件的类DedupMapper。1.Map阶段的实现:编写实现Mapper组件的类TopNMapper。3.驱动类实现:编写驱动类TopNDriver。4.驱动类实现:编写驱动类。

2025-01-21 19:49:15 316

原创 基于Hadoop MapReduce的WordCount任务实现与部署

3、编写Maven文件,包含类WordCountCombiner、WordCountDriver、WordCountMapper、WordCountReducer。4、禁止test操作、点击clean后点击package进行打包,生成jar包。7、打开浏览器,系统自动生成/wordcount/output文件夹。2、将word.txt上传到/wordcount/input目录下。1、创建/wordcount/input目录。6、在hadoop1结点执行。

2025-01-21 19:46:35 179

原创 HDFS的Java API操作

10、运行HDFS_CURD类之后,查看文件已上传到HDFS。8、在Windows中配置Hadoop运行环境。12、目录操作(创建、重命名等)已完成。9、验证系统环境变量是否配置成功。11、以从HDFS下载文件。2、添加Maven库依赖。7、查看目录中的文件信息。14、查看HDFS的目录。4、上传文件到HDFS。5、从HDFS下载文件。13、HDFS运行结果。

2025-01-20 20:24:32 191

原创 HDFS的Shell操作

10、等待10分钟后刷新HDFS Web UI界面看到上传的日志文件已经按照日期分类上传。8、给uploadHDFS.sh添加可执行权限。5、验证hadoop日志文件是否上传成功。7、启动crontab并验证是否启动成功。9、编辑crontab文件,配置定时任务。3、uploadHDFS.sh脚本代码。6、检查是否安装了crontab。2、打开创建shell脚本。4、执行shell脚本。1、启动Hadoop。

2025-01-20 20:21:05 361

原创 Redis的部署和操作

本系统共设计四个键,分别是玩家得分(存储玩家及其得分)、玩家排名(保存玩家的历史排名信息)、玩家信息(存储玩家的个人信息)和玩家总数(存储当前游戏中的总玩家数)。(2)查看当前数据库:Redis没有直接查看当前选择数据库的命令,但可以使用DBSIZE命令查看当前数据库中存储的键的数量:DBSIZE。③替换端口:·sed-i's/7001/7007/g'/export/data/redis/7007/redis.conf。①查看所有键:使用KEYS*命令查看当前数据库中的所有键:KEYS*

2025-01-19 16:33:25 946

原创 Neo4j的部署和操作

它们之间通过一个关系来进行联系,借阅记录表示图书与读者之间的借阅关系,本系统共设计两个节点标签,分别是图书(存储图书的相关信息)和读者(存储读者的基本信息),一个关系标签借阅关系(表示图书与读者之间的借阅关系)。session.write_transaction(create_book,"活着","文学","1993-06-01","余华","1960-04-03","作家出版社","北京市朝阳区")通过读者的姓名或ID,查询该读者借阅的所有图书,并返回图书的详细信息(如标题、作者等)。

2025-01-06 15:27:56 1090

原创 MongoDB的部署和操作

它们之间通过一个关系来进行联系,借阅记录表示图书与读者之间的借阅关系,本系统共设计三个集合,分别是图集合(存储图书的相关信息)、读者集合(存储读者的基本信息)和借阅记录集合(存储借阅的记录)。在MongoDB中,使用“集合”来存储数据,每个集合内包含多个“文档”。(2)创建复合索引(根据 age 和 city 字段):db.users.createIndex({age: 1, city: 1})②查询符合条件的文档(查询age>25):db.users.find({age: {$gt: 25}})

2025-01-06 15:18:16 969

原创 HBase Cassandra的部署和操作

其中,book_id是分区键,borrower_id 是集群键,tags 是集合类型,用来存储书籍标签,borrower_info 是自定义类型 user_info,用于存储借阅人的信息。它们之间通过一个关系来进行联系,借阅记录表示图书与读者之间的借阅关系,本系统共设计三张表,分别是图书表(存储图书的相关信息)、借阅记录表(存储借阅的记录)和读者表(存储读者的基本信息)。新增借阅记录:向BorrowRecords表中插入新的行,包含借阅记录ID(行键)、借阅图书ID、借阅日期、归还日期、读者信息等。

2025-01-05 17:11:48 1319

原创 计算机网络——期末复习(7)期末试卷样例3

五台主机的IP地址和MAC地址分别为:PC1(IP1,M1)、PC2(IP2,M2)、PC3(IP3,M3)、PC4(IP4,M4),PC5(IP5,M5)。该确认号的含义是什么?4.在以太网发展早期,是总线型以太网,后来发展为使用集线器的星型以太网,这两种网络都是共享式以太网,现在是广泛使用交换机的交换式以太网,请分析比较共享式以太网和交换式以太网的异同。(5)某公司的总部和分公司,位于不同的城市,网络内部均采用私有IP,两个内网想实现跨越Internet的安全通信,可以满足该需求的协议或技术?

2025-01-05 16:54:02 753

原创 NoSQL——期末复习(10)四种非关系型数据库对比联系

Redis提供两种持久化机制RDB(默认)(通过快照(内存中数据在某一时刻的状态记录)的方式实现持久化,根据快照的触发条件,将内存的数据快照写入磁盘,以二进制的压缩文件进行存储)和AOF机制(以独立日志的方式记录每次写的命令,重启时重新执行AOF文件中的命令恢复数据)哨兵节点(Sentinel)监控主节点和从节点的状态,当主节点出现故障时,哨兵会自动将一个从节点升级为新的主节点,并通知其他从节点和客户端新的主节点地址,以此来保证Redis服务的高可用性。主节点(Primary节点)负责数据的写入和更新。

2025-01-04 14:32:38 277

原创 NoSQL——期末复习(9)非关系型数据库实例

{"type": "城市", "隶属": "中国", "人口": "2069.3万", "面积": "16410km²", "纬度": "38°56'N", "经度": "116°20'E"}{"type": "城市", "隶属": "日本", "人口": null, "面积": "2188km²", "纬度": "35°44'N", "经度": "140°50'E"}{"type": "国家", "首都": null, "人口": null, "面积": null, "隶属": "国家"}

2025-01-04 14:32:21 306

原创 NoSQL——期末复习(8)第八章其他数据库重点思考题

再由检索器根据用户输入的查询关键字,在索引库中快速检出文档,进行文档与查询的相关度评价,对将要输出的结果进行排序,并将查询结果返回给用户。首先在互联网中发现、搜集网页信息;搜索引擎使用复杂的算法来决定哪些网页应该排在搜索结果的前面。时序数据库是否需要具备灵活的数据更新能力?关键词的相关性:网页内容与搜索词的匹配程度。链接质量:指向该网页的其他高质量网页的数量。时序数据库可以用在哪些场景?用户体验:如加载速度、移动友好性等。搜索引擎中如何对搜索结果排序的?搜索引擎的工作原理是什么?

2025-01-03 08:31:18 152

原创 NoSQL——期末复习(7)第七章Cassandra重点思考题

(2)数据复制:Cassandra使用多副本策略来保证数据的一致性,每个写入操作都会写入到多个节点上,形成数据副本,当读取数据时,客户端可以选择从任意一个副本中读取,这样可以避免单点故障和提高读取性能,Cassandra还支持跨数据中心的数据复制,可以将数据复制到不同的地理位置,提供更高的可靠性和灾难恢复能力。(3)事务支持:Cassandra提供了基于行级别的原子性事务支持,通过使用事务,可以确保一系列相关的读写操作要么全部成功,要么全部失败,这样可以保证数据的一致性和完整性。各自的架构有什么优缺点?

2025-01-03 08:30:37 522

原创 计算机网络——期末复习(6)期末考试样例2(含答案)

1.计算机A和计算机B使用TCP协议进行数据传输,当前发送窗口大小为3000,A已经发送了两个报文段还未收到确认,第一个报文段序号为100,第二个报文段的序号为 1100,则第一个报文段携带了( )字节的数据,如果此时发送窗口已满,则第二个报文段携带了( )字节的数据。1.TCP/IP体系中,TCP是最重要的协议之一,黑客会利用TCP协议发起网络攻击,其中一种攻击手段是利用TCP的三次握手建立连接机制,使用无效的源IP地址,连续发送大量连接请求,使受害主机最终因资源耗尽而停止响应。

2025-01-02 16:30:59 1084

原创 NoSQL——期末复习(6)第六章Redis重点思考题

哨兵节点(Sentinel)监控主节点和从节点的状态,当主节点出现故障时,哨兵会自动将一个从节点升级为新的主节点,并通知其他从节点和客户端新的主节点地址,以此来保证Redis服务的高可用性。(通过快照(内存中数据在某一时刻的状态记录)的方式实现持久化,根据快照的触发条件,将内存的数据快照写入磁盘,以二进制的压缩文件进行存储)主节点复制形成从节点,主节点(Master)负责处理写入操作,而从节点(Slave)则是主节点的副本,用于处理读取操作和提供数据冗余。(2)容灾性好,一个文件可以保存到安全的磁盘;

2025-01-02 16:19:18 718

原创 NoSQL——期末复习(5)第五章Neo4J重点思考题

通过Cypher,你可以轻松地创建、更新、删除节点和关系,还可以进行复杂的模式匹配和查询。比如,你可以通过一条简单的Cypher语句,找到所有与某个节点直接或间接相连的节点,这在传统的数据库中几乎是不可能完成的任务。Neo4j通过图结构存储数据,能够高效地进行关系查询,例如查找某人的朋友的朋友,或者查找与某个实体相关的所有实体。Neo4j提供了强大的可视化工具,能够直观地展示知识图谱中的节点和关系。这种灵活性使得Neo4j非常适合用于构建知识图谱,因为知识图谱的数据结构通常是动态变化的。

2025-01-02 16:18:40 569

原创 计算机网络——期末复习(5)期末考试样例1(含答案)

(2)端口的作用:为了标识本计算机应用层中的各进程,在运输层使用协议端口号(protocol port number),或通常简称为端口(port),把端口设为通信的抽象终点,端口号只具有本地意义,两个计算机中的进程要互相通信,不仅必须知道对方的IP地址,而且还要知道对方的端口号。物理层的任务就是传输位流,数据链路层的任务是负责相邻节点间的通信,网络层的任务是为数据在网络中选择一条合适的路径,运输层的任务是负责不同计算机中两个进程间的通信,应用层就是为了让用户能够使用网络,如浏览网页、(以5层结构为例)。

2025-01-02 16:14:42 1975

原创 NoSQL——期末复习(4)第四章HBase重点思考题

当Regionserver恢复后,会查看当前WAL中的数据,并将记录进行重放(replay),根据记录的表名和分区名,将数据恢复到指定的store中。当数据被写入memstore之前,Regionserver会先将数据写入预写日志(WAL,Writeaheadlog),预写日志一般被写入HDFS,但键值写入时不会被排序,也不会区分Region。当活跃Master节点故障的情况下,Zookeeper会在备用Master节点中选举一个新的活跃Master节点。HBase采用的是一种面向列的键值对存储模式。

2025-01-02 15:35:26 735

原创 NoSQL——期末复习(3)第三章MongoDB重点思考题

MongoDB支持对文档的自动分片,分片的依据是片键(Shard Keys),分片键可以由文档的一个或多个字段构成,分片使得集群中的数据可以在分布式环境下均衡存储和使用。MongoDB支持基本的分片策略,即范围分片(MongoDB的默认分片策略。它根据分片键的值范围将数据分布到不同的分片上)和哈希分片(通过对分片键进行哈希运算,将数据均匀分布到各个分片上)。从节点(Secondary节点)监听主节点oplog的变化,并根据其内容维护自身的数据更新,使之和主节点保持一致(最终一致性)。

2025-01-02 15:33:37 612

原创 NoSQL——期末复习(2)第二章基本原理重点思考题

布隆过滤器的误报率,和哈希算法的个数、二进制向量的大小以及数据总量有关,一般来说二进制向量越大,误报率越低,因此需要在存储空间占用和误报率之间做权衡。(2)BASE的最终一致性(在一些应用场景下)也可以看作NoSQL允许多个副本可以存在暂时的不同步(即异步更新)。优点是空间占用低、检索速度快,缺点则是存储在一定的误报率:当布隆过滤认为某元素存在于集合时,该元素可能并不存在,但如果布隆过滤认为该元素不存在于集合,则肯定不存在。(4)分布式系统的可伸缩性:可以移除故障节点,替换新节点,实现数据的再平衡。

2025-01-01 15:19:03 501

原创 NoSQL——期末复习(1)第一章绪论重点思考题

以完善的关系代数理论作为基础,具有数据模型、完整性约束和事务的强一致性等特点,借助索引机制可以实现高效的查询,技术成熟,有专业公司的技术支持。:缺乏数学理论基础,复杂查询性能不高,大都不能实现事务强一致性,很难实现数据完整性,技术尚不成熟,缺乏专业团队的技术支持,维护较困难等。2.广泛的网络访问,用户即可在任何时间、地点,利用多种终端(例如:手机或电脑)通过网络和标准的网络协议访问资源。1.按需自助服务,用户可以根据自身需求,自行配置资源的类型、数量和使用时间,而无需和云计算供应商进行过多交互。

2025-01-01 15:16:53 540

原创 计算机网络——期末复习(4)协议或技术汇总、思维导图

(1)外部网关协议EGP(BGP):ISP之间的连接:BGP常用于不同互联网服务提供商(ISP)之间的路由交换。(7)移动IP技术:现代智能手机、平板电脑等设备通过移动IP技术可以在不同的网络环境中保持无缝连接,无论是切换Wi-Fi、4G/5G网络,还是在不同的移动运营商之间切换,移动IP技术都能保证通信不中断;(9)地址解析协议APR:将网络层地址(通常是IP地址)映射到数据链路层地址(如MAC地址)的一种协议。(1)停止-等待协议(属于自动请求重传ARQ协议):确认、否认、重传、超时重传、

2024-12-26 19:12:17 809

原创 计算机网络——期末复习(3)4-6章考试重点

确认号:期望收到对方下一个报文段的第一个数据字节的序号,也是对确认好前面的序号的数据的确认。不能分配给主机或路由器接口的:A类网络号0和127,主机号全为0或全为1。复位RST:RST为1,就是因为严重差错导致需要复位,断开连接重新连接。紧急URG:该值为1,表明紧急指针字段有效;:当FIN=1时,说明报文段发送方一发送完毕,要求释放。紧急指针:报文段的紧急数据的字节数,窗口为0也能发送。SYN为1,且ACK为0,表明这是一个请求连接报文段。序号:本报文段所发送的数据的第一个字节的序号。

2024-12-26 19:08:02 547

原创 计算机网络——期末复习(2)1-3章考试重点

C为信道的极限信息传输速率,单位b/s;W是信道的频率带宽,S是信道内所传输信号的平均速率,N是信道内的高斯噪声功率,S/N即为信噪比。交换机不隔离广播域但隔离碰撞域,路由器既隔离广播域也隔离碰撞域。1、奈氏准则:理想低通信道的最高码元传输速率=2W,W为理想低通信道的频率带宽。发送的数据后面+(n-1)个0,除数为多项式,有项为1,无项为0,位数为n。进行异或运算(不一样为1,一样为0),得到的余数加在发送数据的后面发送出去。2、多帧滑动窗口和选择重传协议:接收窗口+发送窗口≤2^n,n为比特数。

2024-12-18 16:28:30 623

原创 计算机网络——期末复习(1)背诵

TCP报文段的接收窗口字段的含义与功能。TCP协议和UDP协议的最主要区别。TCP报文段的确认号字段的含义。TCP报文段的序号字段的含义。NAT(网络地址转换)VPN(虚拟专用网)

2024-12-18 16:20:47 814

原创 NoSQL大数据存储技术测试(7)键值对数据库Redis和其他NoSQL数据库

AOF是以日志形式,将内存中的数据整体拷贝到硬盘上 (我的答案)AOF操作的实时性好,但是产生的数据体积大,数据的恢复速度慢。RDB是以快照的形式,将内存中的数据整体拷贝到硬盘上。Redis作为数据库实现海量数据的存储 (我的答案)关于Redis的持久化,下列描述错误的是:()下面关于Redis的应用场景,错误的说法是()下列数据库中,()不是键值对存储数据库。PageRank (我的答案)MongoDB (我的答案)Redis采用的是()模式。下列不是搜索引擎的是()。股票市场分析 (我的答案)

2024-12-15 20:05:18 457

原创 NoSQL大数据存储技术测试(6)图数据库Neo4J

关于Neo4j中节点(Nodes),关系(Relations),属性(Properties),标签(Labels)说法不正确的有()Neo4j中CQL语法中 Set的作用是可以更新实体对象(Entity)的属性,也可以新加实体对象(Entity)的属性。MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n, r (我的答案)属性(Properties)表示的是实体对象(Entity)中的属性。关系连接实体对象(Entity),关系没有方向性 (我的答案)

2024-12-15 19:45:09 483

原创 NoSQL大数据存储技术测试(5)MongoDB的原理和使用

MongoDB的分片与副本集主要区别在于分片是每个节点存储数据的不同片段,而副本集是每个阶段存储数据的相同副本。MongoDB支持复杂的数据结构,支持索引(包括二级索引和地理空间索引),支持聚合查询。MongoDB的集合是动态模式的,同一个集合里面的文档可以是各式各样的。CouchDB支持动态查询,MongoDB不支持动态查询 (我的答案)MongoDB是一种NoSQL数据库,具体地说,是( )存储数据库。下列选项中,不属于MongoDB支持的数据类型是()。

2024-12-08 18:20:24 616 1

原创 软件工程——期末复习(4)

单车按照使用时长计费。共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享服务,是一种分时租赁模式。5.软件设计的基本原则包括哪些,请写出原则,并给出简单的解释?C、软件详细设计的主要工作,主要描述各模块之间的连接接口。C、包含数据需求,质量需求和管理需求等用户对系统的要求。B、是概要设计的一部分,要根据窗体的功能进行设计。D、分解的模块越多,系统就越简单,开发的成本越低。D、主要由性能、容量、可靠性、安全性等因素组成。D、应用程序的体系结构,包含部件、连接件和配置。

2024-12-04 20:05:13 1909 2

原创 软件工程——期末复习(3)

(1) 在程序规模比较小,对质量要求不高时,构建-修复模型可对需求快速响应,因为此时软件结构简单,开发人员可控,可以迅速地将新功能或修改推向市场,收集用户反馈并及时进行修复和调整。(4)比如说带来的软件危机,这是由于使用硬件的思想来解决了软件的问题,1个人干10个月和10个人干1个月在软件思想上未必可行,这同时也引出了软件工程的重要性。(3) 边界值数据本质上是属于某个等价类的范围,测试时确实有些重复,但是为了更好的测试质量(边界值特别容易出bug),适当的重复是可以接受的。文档和建模是相互支持的。

2024-12-04 20:03:53 1383

原创 软件工程——期末复习(2)

通过依赖倒置,可以降低类与类之间的耦合性,提高系统的稳定性,提高代码的可读性和可维护性,并降低修改程序带来的风险。也可以理解为:相同的职责放到一起,不同的职责分解到不同的接口和实现中去,这个是最容易也是最难运用的原则,关键还是要从业务出发,从需求出发,识别出同一种类型的职责。举个例子,背景描述:XX保险公司希望充分利用日益完善的移动通信技术,在原有的办公系统的基础上进行扩展,使得在外的业务人员能够及时地获得客户、业务相关的动态信息,与此同时,实现企业内部的即时通信。有时候,系统的负载很高,但吞吐量却较低。

2024-11-28 19:28:19 1147

原创 软件工程——期末复习(1)

虽然在理论上,有些问题可以有最优解,但在实际的软件工程中,所谓的“最好”解决方案通常是相对的,它依赖于具体的项目需求、资源、时间限制、团队技术能力等多重因素。依赖于编程机制可能导致设计的局限性,影响系统的灵活性和可维护性,且随着技术的发展,编程机制的变化可能会导致体系结构需要频繁调整。因为现代软件设计的核心问题在于控制由于软件复杂性引起的“系统复杂度”,为此“分而治之”是软件设计解决复杂度难题的主要思路,抽象和分解正是“分治”“解耦'的体现,在软件工程实践中也得到了大量应用,故此是软件设计的核心思想。

2024-11-28 19:20:14 882

原创 软件工程第20、21章小测

用户对交付的软件会经常性的提出修改意见和新的需求。为了保障交付后的软件产品正常运行而进行的代码修改。随着软件规模和复杂度的增加,软件维护成本约占总成本的()。用户升级了操作系统造成软件系统无法正常运行,需要进行()。软件公司为了提高软件可维护性而进行的代码重构称为()。用户发现了一个遗留的错误,为了修复它需要进行()。为了满足用户新的需求而进行的维护称为()。渐进式的交付方式,适合于()过程模型。传统的软件交付方式,有什么弊端()。软件的几种维护中,以()占比最高。软件交付后修正遗留缺陷的活动。

2024-11-26 15:26:03 892

原创 软件工程第19章小测

Verification为验证,目的是检查开发者是否正确地使用技术建立系统,确保系统能够在预期的环境中按照技术要求正确的运行。Validation为确认,目的是检查开发者是否建立了正确的系统,确保最终产品符合规格。错误(error)指系统执行到缺陷代码,就可能是的执行结果不符合预期且无法预测。测试设计:是软件测试的关键阶段,目标是进一步明确需要被测试的对象,为被测对象设计测试用例集合。测试评价:测试执行结束后,必须评价测试结果,以确定测试是否成功。经过测试后,即使没有发现错误,也不能说软件是没有问题的。

2024-11-26 15:23:12 678 1

原创 软件工程第15章小测

在线购物过程中,顾客(Customer)生成订单(Order)时,需要查询所购商品(Commodity)的信息(如CommodityID,Price)。类的供接口是所有公有成员变量和成员方法的声明,可以被别的类直接访问,代表了该类与其他类协作的契约。DIP(Dependence Inversion Principle) (我的答案)类的()是该类在实现中使用到的其他类及其相关协议。对象之间交互的消息(方法名) (我的答案)下面关于面向对象封装的说法,错误的是()。面向对象方法中,最重要的模块是()。

2024-11-25 21:39:04 539

原创 软件工程第14章小测

在线购物过程中,顾客(Customer)生成订单(Order)时,需要查询所购商品(Commodity)的信息(如CommodityID,Price)。该模块中的三个相对独立的子功能必须以特定次序执行,整个模块具有()。操作系统的开机初始化模块,包含的动作没什么大的关系,但必须在开机后的一段时间内都 完成。再读出文件中他的目前工资、工作年限、是否离休等信息,通过一定算法计算他的离/退休工资,再结 果写入文件。类的供接口是所有公有成员变量和成员方法的声明,可以被别的类直接访问,代表了该类与其他类协作的契约。

2024-11-25 21:29:28 742

原创 UML--状态机图

如果并发子状态中有一个子状态比其他并发子状态先到达它的终止状态,那么结束的子状态的控制流将在它的终止状态等待,直到所有的子状态都终止。事件和转移是相伴出现的,事件可以看作是对转移的修饰,描述系统元素状态改变的原因。如果一个组合状态的子状态对应的对象在其生命周期内的任何时刻都只能处于一个子状态,也就是说状态机图中多个子状态是互斥的,不能同时存在,这种子状态被称为顺序状态。判定决策点是状态转移中的分支,系统的状态在转移时被不同的条件影响,能够在不同的条件下转移到不同的状态,这个条件即为判定决策点。

2024-11-21 22:46:03 1180

原创 软件工程第13章小测

1、为了实现软件的并行开发,同时也保证其易理解和更好的灵活性,进行软件设计时,会将软件分解为“独立”的模块,称为模块化。试分析AlipayClient构造器方法,并分析从下面代码(测试代码)到AlipayClient类的访问,存在的耦合是()。4、当一个构件和某些基本构件(如操作系统、数据库、无线通信功能)进行通信和协作时,发生()。1、当一个模块完成一组且只有一组操作并返回结果时,称该模块是()的。5、软件必须进行内部或外部的通信,因此()是比如存在的。6、下面代码存在的耦合是()。

2024-11-21 22:41:42 821

原创 软件工程第12章小测

4、一个类的属性必须适合这个类和它的全部特殊类的所有对象,同时,一个类中的操作也应适合这个类及其所有特殊类的每一个对象实例。3、在面向对象方法中,对于客观事物的描述,其静态特征用对象的( )表示。1、结构化详细设计中,为降低复杂程度,使用按算法()的思想。2、结构化详细设计过程将需求阶段的(),转换为()模型。2、针对对象之间的动态联系,以下说法正确的是( )。3、( )是描述类的所有对象的共同特征的一个数据项。1、OO中,对象之间的协作是通过()来实现的。1、在软件详细设计中,会对()给出设计方案。

2024-11-20 23:15:51 480

原创 软件工程第11章小测

过多的提示和反馈会打断用户的思维过程,降低用户的工作效率,且增加用户的烦恼和不满。1、以下有关人机交互设计的说法中,不正确的是_____________________。1、人机交互的目标是探索在人和机器之间沟通的有效方法,让用户利用机器顺利的完成任务。2、()是用户进行人机交互时头脑中的任务模型,人机交互设计需要依据其进行隐喻设计。3、进行人机交互设计时,首先要设计多次交互之间的逻辑衔接结构,这称为()。2、好的人机交互常常被忽略,而坏的人机交互令人印象深刻。2、下面哪些设计可以增加设计的交互性()。

2024-11-20 23:14:46 699

网站流量日志数据分析系统的构建及可视化:Hadoop环境搭建、Flume数据采集、MapReduce预处理及FineBI可视化

内容概要:本文详细介绍了一个完整的网站流量日志数据分析系统的设计与实施过程。首先是创建Maven项目并通过Java程序模拟生成Nginx日志并将其打包成jar文件传输至Hadoop集群。接着利用Flume工具将Nginx日志采集到HDFS。随后,实现了基于Hadoop的MapReduce程序,将原始日志进行预处理和转换,并最终将结果保存回HDFS。同时创建了Hive数据仓库表进行进一步数据清洗、聚合分析等操作,并使用Sqoop工具将分析得到的数据导出至MySQL数据库。最后借助于FineBI完成了对数据分析结果的可视化展现,包括浏览量和人均浏览页数两个主要的分析指标。 适合人群:从事大数据相关领域的专业人士,尤其是有经验的开发人员和分析师,以及有兴趣深入了解Web日志处理流程的技术爱好者。 使用场景及目标:此案例适合希望了解从数据收集、预处理到分析和可视化的完整大数据流水线的实际应用场景。目标在于帮助读者掌握如何运用各种大数据技术和工具(如Flume、Hadoop、Hive、Sqoop等),并对Web应用程序的用户行为做出量化评估。 其他说明:文中还提供了详尽的操作指导和代码片段,以便于实际应用和练习。此外,还包括了安装和配置关键软件和服务的具体细节,使读者能够轻松复现文中描述的所有步骤。

2025-01-20

数据迁移实践:Sqoop从MySQL到HDFS、Hive的数据传输详解

内容概要:本文详细记录了使用Sqoop工具进行数据迁移的操作步骤。主要包括以下几方面:一是介绍如何将本地MySQL数据库的数据导入到分布式存储系统HDFS中,涉及创建数据库、配置远程访问权限以及具体的数据导入命令;二是讲解了增量数据同步的过程及其参数设置;三是演示了从MySQL直接导入数据到大数据仓库Hive的方法,包括所需jar包放置、SQL命令执行等;四是介绍了基于条件筛选特定子集再完成迁移任务的技术点。最后讲述了怎样把HDFS中的文本记录反向推送回到关系型管理平台内的新建表里。 适用于具有一定Linux操作系统、Shell编程及SQL语句基础知识,并对ETL(抽取转换加载)流程有所认识的人士。 使用场景及目标在于让读者了解并掌握企业环境中常用的Sqoop命令来实现实时批量移动数据的功能,熟悉各种选项的具体含义,从而能够灵活运用到实际工作中解决多源异构系统间的数据交换问题。 另外值得注意的是文中出现多次关于路径错误提示,提醒读者正确设置环境变量以便顺利部署相关组件和服务;还有就是安全方面给出建议说密码不应放在明面上而推荐交互方式输入。 适合人群:对于已经掌握了基础Linux命令行工具用法并且熟悉MySql和HDFS的基本概念和技术细节的专业人员而言非常有价值; 使用场景及目标:帮助工程师学会高效利用Apache Sqoop作为ETL桥梁连接关系型数据库和非关系型数据库间的操作。 其他说明:文章提供了详细的命令样例以供测试学习之用,请务必检查所有涉及到软件版本的一致性和安全性问题(如不要以明文方式暴露密码)。

2025-01-20

大数据处理平台中Azkaban工作流管理与Hive任务调度的实现与应用

内容概要:本文主要介绍了Azkaban作为工作流管理系统如何进行MapReduce程序和Hive查询的任务调度与管理工作流的具体步骤。首先通过启动并初始化 Azkaban的相关组件(Executor Server 和 Web Server),随后展示了具体的作业创建工作流项目,包括创建和打包job文件(如wordcount和test.sql),以及上传到Azkaban平台并执行相应的任务流程(即WordCount任务和Hive查询)。接着详述了各个操作过程中涉及的一些命令行指令及其目的。并且演示了如何通过Web界面检查工作流日志来确保工作流是否按预期执行,并在最后展示从HDFS上获取处理后的结果文件,证明任务正确完成。 适用人群:适用于从事大数据领域研究和技术工作的专业人员,尤其是负责数据分析、ETL工程实施的工程师,需要有Linux操作系统的基础以及对Hadoop生态系统的初步认识。 使用场景及目标:针对有大规模数据处理需求的企业或者科研机构,在部署分布式计算集群后用于批量作业自动调度与跟踪监控;提高工作效率,减少人工干预错误概率;确保任务执行的一致性和准确性。 其他说明:本文档基于特定版本的Azkaban软件及Hadoop环境搭建,实际使用时需要注意兼容性问题。此外,虽然文中提供了详细的指导教程但可能并不涵盖所有异常情况处理措施,因此用户还需要自行查阅官方文档进一步学习了解有关知识。

2025-01-20

大数据处理:基于Flume的日志采集与同步至HDFS的技术详解与实操

内容概要:本文详细介绍了将不同节点上的日志文件通过Apache Flume进行采集并同步存储到Hadoop分布式文件系统(HDFS)的具体步骤和技术要点。主要涵盖了配置exec-avro-new.conf和avro-hdfs.conf两个配置文件、确保所有节点间Jar包版本一致的操作以及启动相应的Agent来实现日志数据流的传输过程。文中特别提到,当完成这些设置以后,在每个参与节点都会创建一个新的Agent实例用于管理整个流程,最终能够使来自Web服务器的日志记录被正确地存入HDFS内的相应位置。 适合人群:熟悉Linux环境操作,掌握基本Shell命令行工具,并对Hadoop生态系统有一定了解的数据工程师、运维技术人员或者对集群架构有兴趣的学习者。 使用场景及目标:适用于希望通过集中化的方式来管理和归档大规模在线应用所产生的海量非结构化文本日志的企业IT部门。通过对本篇文章提供的方案的应用,可以使团队更好地理解和优化应用程序的行为模式,同时也有助于提升系统的安全性和可靠性监控能力。 其他说明:文章中的示例展示了从实际工作中提炼而出的最佳实践做法,但具体的实施可能会因为所处业务背景和个人偏好而有所变化,因此鼓励读者根据自己实际情况调整参数值和逻辑流程以满足特定的需求。

2025-01-20

大数据技术:Hive SQL 数据导入与复杂查询实战指导

内容概要:本篇文章详细介绍了Hive这一大数据处理工具的多项数据操作流程,涵盖导入、导出、分区设置以及各种查询语句的应用实例,如基于特定条件筛选员工信息和利用聚合函数进行数据分析。此外,文档演示了静态与动态地对分区表导入外部文件夹数据的技术细节;还讲解了内连接、左外连接、右外连接及全外连接等多种表间连接的操作方式,并辅以实例展示每种类型的适用范围及其产生的不同效果。 适用人群:适合有一定Linux与Hive SQL基础的学习者或者从事分布式数据存储系统运维的相关技术人员。 使用场景及目标:该资料可以帮助初学者理解和掌握Hive的基本概念、常用命令行指令及其具体应用场景;也可以作为企业内部培训教材,用于培养数据工程师、分析师等相关岗位所需技能;同时也是个人提升自我、积累项目经验的重要参考资料之一。 其他说明:文章采用大量实际案例来引导读者逐步深入了解各个知识点,在理论基础上强调实战能力培养,确保学员能够真正融会贯通所学的知识要点。同时附带丰富的图表辅助说明重要环节步骤,使教程内容更加生动形象易懂。

2025-01-20

大数据处理平台Hive的数据库与表管理操作详解及应用

内容概要:本文详细记录了Hive数据库的各项操作,从集群环境搭建到具体的表格管理步骤。首先介绍如何启动Zookeeper以确保集群稳定运行,再讲述启动和连接HiveServer2的具体命令,以及在Hive环境中进行的基本数据库管理任务(如创建、删除和查询数据库)和表管理任务(涵盖多种表类型的定义、数据类型设定及其调整、字段的变更等)。最后还展示了数据库表属性的操作和分区表管理的具体实例。 适合人群:熟悉Linux操作系统和HDFS基本命令的大数据分析人员,特别是对Apache Hive有一定了解的数据工程师和技术爱好者。 使用场景及目标:帮助读者理解Hive环境设置流程,并掌握利用CLI工具进行复杂SQL操作的方法;同时适用于企业级数据仓库系统的学习材料,用于培训和实操指南。 其他说明:文中所涉及的所有操作均基于真实的分布式计算环境,提供了详细的命令行接口调用方式,并附有完整的执行过程与反馈信息,使得每个步骤都清晰可见,非常适合初学者自学或者进阶提高时参考。

2025-01-20

分布式计算:Hadoop 高可用集群搭建指南与配置解析

内容概要:本文档详述了在多节点环境下配置高可用Hadoop集群的关键步骤,包括创建快照保护,指定独立HA工作路径并安装解压Hadoop组件至该位置。重点介绍了对各个Hadoop配置文件(hadoop-env.sh、core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml 和 workers)的相关参数设定。为了确保配置生效,在各服务器节点正确设置了系统环境变量并通过源码编译检验。此外还详细展示了通过格式化名称节点(NameNode),同步名称节点配置,启用日志聚合以及启动各类守护进程(如NameNode、DataNode、ResourceManager、NodeManager及辅助服务)来最终实现集群服务在线运行的操作步骤,确保了在主控节点故障时可以无缝切换备用节点继续提供服务的能力。 适合人群:有Linux操作系统基础知识和Hadoop基础知识的技术人员。 使用场景及目标:本篇文章非常适合用于指导技术人员在企业内部或云平台上快速建立一个稳定的、容错性强的数据处理环境。 其他说明:除了具体的实施细节外,文档还包括对Hadoop架构原理的基本讲解,比如如何利用Zookeeper协调多命名空间间的通信、怎样通过YARN来进行统一资源管理和任务调度等概念。

2025-01-20

ZooKeeper分布式协调服务的安装与Shell、Java API操作指南

内容概要:本文档详细介绍了如何在完全分布式模式下部署ZooKeeper集群,包括安装、配置、创建数据持久化目录以及分发系统环境变量的具体步骤。同时涵盖了使用ZooKeeper客户端命令行工具zkCli的基本操作,如创建不同类型的节点、查看节点状态及其数据内容,并深入讲解了用Java API对ZooKeeper的操作方法,包含建立会话连接、创建节点、检查节点的存在与否、读取及更新节点数据,乃至遍历查询子节点和最终删除节点。整个过程展示了集群搭建、Shell脚本交互与程序级别的接口调用,有助于全面掌握ZooKeeper的基础运维技能。 适合人群:对分布式系统有一定认识,尤其是想要深入了解ZooKeeper的集群管理和操作的应用开发者和技术运维人员。 使用场景及目标:旨在提供一份详尽的手把手指导手册,帮助用户快速掌握ZooKeeper的各项基本配置及高级操作技巧。无论是构建自己的生产环境还是用于学习研究都非常合适。重点在于理解和实践完全分布式模式下ZooKeeper的部署流程和服务操作,以便能够解决实际应用场景中遇到的问题,如确保系统的高可用性和一致性。 阅读建议:文档从零开始一步步地指导您完成全部设置,每一步都有具体指令和截图辅助解释,因此非常适合初学者循序渐进地学习。此外还涉及到很多底层的概念说明和技术细节讨论,对于进阶使用者也能起到良好的启发作用。建议读者认真阅读并跟随示例动手练习,加深理解。

2025-01-20

大数据处理之数据去重、TopN统计与倒排索引的Hadoop实现

内容概要:本文详细介绍了使用Hadoop框架实现数据去重、TopN计算以及倒排索引的具体步骤和技术细节。对于数据去重,描述了创建Map和Reduce任务以及配置Job参数来去除重复记录。在TopN计算部分,通过编写自定义的Map和Reduce函数筛选前五条最高频的数据记录。对于倒排索引,除了Map和Reduce组件外还增加了Combine功能提升性能,最终成功实现了倒排索引的功能并展示了结果存储。 适用人群:对分布式计算有兴趣的学习者和有一定Java编程经验的大数据分析初学者。 使用场景及目标:旨在为希望深入理解Hadoop及其应用程序的读者提供具体操作指南,帮助他们掌握利用Hadoop进行常见文本处理技巧的方法。 其他说明:本实验环境搭建于本地Linux环境下,所有测试用例均为人工构造的小规模数据集以便快速验证各步骤的效果。

2025-01-20

基于Hadoop MapReduce的WordCount任务实现与部署

内容概要:本文详细记录了一个完整的基于Hadoop平台的WordCount任务实现过程,从环境准备到最终成果展示,涵盖了关键步骤的具体操作流程。首先介绍了创建所需文件夹结构并上传原始文本文件至HDFS;其次详述了构建Maven项目来组织相关源代码,以及定义Map(映射)、Combine(组合)、Reduce(归约)三个重要的处理环节所对应的程序逻辑;然后阐述了项目打包、分发过程及远程节点上部署运行该作业的整体思路;最后,通过访问Web界面确认最终生成的统计报告保存路径及其部分内容,验证任务成功完成。 适用人群:适用于初学者及有一定经验的数据工程师或研究人员,特别是那些希望快速掌握MapReduce模型实际应用技巧的人士。 使用场景及目标:此教程可以帮助用户深入了解Apache Hadoop生态系统内的MapReduce计算范式的运作机制。它演示了如何借助命令行工具高效管理和查询大规模非结构化或半结构化的数据集,从而支持后续更加复杂的分析任务的需求探索。此外,对于正在寻找入门级实战演练的学习者而言,这也是非常有价值的练习资料,既包括理论概念的学习也提供了充分的机会来进行动手实验。 其他说明:为了确保最佳实践效果,请注意跟随文中指引逐步尝试每一个新概念的应用,尤其是在编码部分,尽量不要跳过任何一步骤,并积极查阅官方文档或其他权威参考资料作为补充材料,遇到困难时也不必气馁,多做几次重复试验往往能带来意外收获。同时考虑到性能优化的可能性,可以在适当时候调整配置参数,比如增大堆栈容量或者更改块副本数目等。

2025-01-20

Java环境中基于HDFS API进行文件操作与环境搭建

内容概要:本文档详细介绍了在Windows环境中搭建并配置Hadoop 3.3.0及其HDFS系统的步骤,并具体讲述了使用Java编写程序与HDFS交互的过程。文档涵盖了创建项目、引入所需依赖、配置连接HDFS所需的环境变量以及实现对分布式文件系统的常见操作。通过对文件上传至HDFS、由HDFS检索文件、执行各种类型的文件夹管理和检查服务器存储情况的具体案例演示,作者展示了如何有效地利用API来操控分布式系统中的资源。 适用人群:对分布式文件系统感兴趣的初学者、希望将本地应用程序迁移到集群环境下执行的技术爱好者或者从事数据分析领域的工程师。 使用场景及目标:旨在为那些想要快速入门Apache Hadoop特别是HDFS组件的人士提供完整详细的指南,确保他们能够顺利地构建测试环境,并掌握HDFS的基本使用技能如增删查改等功能;此外,还提供了有关最佳实践和错误排错的一些指导。 其他说明:文中涉及大量命令行界面截图以及相关脚本代码段,使理论部分更容易被理解和接受;同时针对可能出现的问题给出了预防措施和技术支持解决方案。由于Hadoop版本更新迅速,因此需要注意文档内的安装包和其他第三方工具可能存在的差异性和兼容性问题。

2025-01-19

实验一:HDFS的Shell操作

大数据处理技术

2025-01-19

Redis的部署和操作

Redis的部署和操作

2025-01-19

基于Neo4j的大数据存储技术应用-单机部署、操作指南与图书管理实战案例

内容概要:本文档主要介绍了在Hadoop环境下的Neo4j数据库的部署方法及其基本操作,并提供了具体的应用实例——构建一个简单的图书管理系统。首先是关于Neo4j单机版本的手工部署指导,包含了从软件包获取、环境准备到启动验证的一系列流程,接着讲解了Cypher语句用于CRUD操作的知识,涵盖节点、关系的基本管理和复杂查询技巧;最后以图书与读者之间的借阅行为建模为例展示了如何用代码来操纵数据库。文档不仅给出了完整的创建、读取、更新和删除书籍和用户的SQL样例程序,而且还分享了一些实用的经验提示和注意要点。 适合人群:对图数据库有兴趣的技术爱好者、想要深入了解Neo4j特性的研究学者、正在探索非关系型数据库解决方案的数据分析师或者从事大数据领域的从业人员

2025-01-06

大数据存储HBase与Cassandra部署与应用实例-图书管理系统的构建

内容概要:本文介绍了HBase与Cassandra这两种大数据存储技术的实际应用场景,主要侧重于Cassandra的具体实施细节。首先详细展示了Cassandra在单个节点上的部署与配置步骤,如下载软件包、解压、启动与连接等基本操作。其次深入讲解了多节点环境下Cassandra的分布式部署,涵盖环境准备(包括关闭防火墙、设置无密码登陆)、文件上传与配置编辑直至最后的启动检查。进一步,文章通过建立图书管理系统来演示如何利用CQL进行数据库的基本操作(CRUD),从定义库结构(如创建Keyspaces和表格)、键值设置再到数据的增、删、改、查操作流程都有涉及。此外,提供了具体的Python代码示例指导用户完成基于Cassandra的图书管理系统编程实战部分,从而巩固对于所讲概念和技术点的理解。 使用场景及目标:旨在让读者熟悉NoSQL数据库特性,尤其是面向非结构化数据处理时的优势;掌握Cassandra这种分布式的NoSQL数据库系统的架构设计与运维方法;最终能够在实际项目中独立运用Cassandra搭建高效能的应用程序,像文中提到的图书管理系统。

2025-01-05

MongoDB部署、操作及应用案例详解:涵盖单实例、副本集、分片集群

内容概要:本文详述了MongoDB的全面部署流程及其基本操作。首先介绍单一MongoDB服务器的环境搭建、配置及服务启动方法,随后讨论基于MongoDB构建复制集的细节——包括本地机器多节点模拟以及分布式的部署方式,最后重点阐述了一个完整MongoDB分片集群的搭建,具体展示了配置文件、命令行指令等关键环节。此外,本文也探讨了关于文档的操作,如查看、使用、删除数据库,管理文档、聚合框架的应用,并通过实例演示了图书馆管理系统的构建,即数据库结构规划以及实际编程接口的调用情况。 适合人群:有初步了解Linux操作系统和网络基础知识的技术从业者,希望深入了解MongoDB非关系型数据库特性,学习掌握高效部署高可用数据库集群的方法。 使用场景及目标:适用于希望构建弹性、容错性强的数据库系统的开发团队;希望通过真实项目案例巩固理论概念的学习者。同时提供完整的操作指南,帮助企业快速部署和维护MongoDB。 阅读建议:为了更好地理解和应用本篇文章提供的知识点,读者应在熟悉Linux命令行环境的基础上仔细研究各步骤的具体实施方法,并动手实操一遍,尤其是针对不同拓扑结构下的副本集和分布式集群部署,注意每一步骤可能遇到的问题及解决方案;另外,有关MongoDB内部特性的讲解部分,可以参考官方文档进一步深入探究其背后的原理和技术逻辑。

2025-01-02

基于MySQL数据库的SQL数据定义功能实验与DBMS认识

内容概要:本文档详细记录了一次针对MySQL数据库的数据定义功能实验,涵盖了从配置实验环境开始的所有关键步骤。包括如何安装配置数据库及其图形界面客户端Navicat Premium、具体创建三种关系型表(student、course、sc),以及对所创表的各种调整如增加字段、设定约束条件等操作,还有对于错误如修改表结构发生的约束冲突等问题给出解决方案。通过此次实战演练使参与者掌握MySQL中DDL语句的应用并学会使用可视化管理工具提高数据库管理工作效率。 适合人群:对于数据库管理系统(DBMS)尤其是关系数据库有初步了解并且想进一步提升SQL语法能力的学生或者自学者。 使用场景及目标:此案例适用于希望通过具体实操加深对于数据库基本命令行接口和高级特性如事务处理等方面的个人学习者或者是教师用作教学参考资料来帮助学员构建扎实的专业技能。 阅读建议:建议新手读者首先熟悉相关理论概念然后依照文档指引一步步跟着做练习同时注意对比自己操作时产生的报错信息与文中列举情况进行思考以更好地积累排障经验进而提高自身动手能力水平。

2025-01-01

数据库安全管理与控制技术-基于MySQL的用户权限管理和数据完整性的实验研究

内容概要:本文主要介绍了在一个MySQL数据库环境中完成关于授权及收回授权、数据完整性约束和触发器的具体实验内容。首先,涵盖了如何创建、管理数据库用户及其权限,详细解释了用户账号和权限分配的基本语法,并介绍角色机制来高效管理复杂权限体系。其次探讨了多种手段确保数据完整性和一致性的方法,涉及创建符合特定约束的学生信息和课程信息表格,并利用CHECK和ENUM等关键字强制业务规则。最后,通过几个具体的触发器实例阐述了如何响应不同数据库活动执行额外的操作以加强数据的可控性和保护。 适用人群:本篇文章适用于正在学习或者初入职场的数据库管理人员或开发者,希望深入了解关系型数据库尤其是MySQL系统的安全配置和技术实现的人士。 使用场景及目标:此实验报告旨在指导读者掌握用户管理及权限设置流程,理解各类权限的作用范围;明确如何设置实体完整性、域完整性和引用完整性等不同的完整性约束,保障数据质量;学会编写不同类型触发器,用于处理复杂业务逻辑及增强系统安全性。 其他说明:该实验是在MySQL版本8.0.36上运行,借助NavicatPremium16作为GUI工具。文中遇到并解决了关于SQL查询占位符未被正确定义的问题,提示后续使用者注意类似细节。总体来说,本实验增强了对数据库安全管理重要性的认识,提高了操作技能。

2025-01-01

数据库系统实验:SQL 数据更新与视图的应用和实现方法

内容概要:本文详细介绍了在MySQL数据库中使用SQL语句进行数据更新、视图创建的方法,并附有实际的操作案例。主要实验内容包括插入新数据、修改现有数据、删除数据、清空整个表的内容,创建多种类型的视图以及解决可能出现的数据一致性的错误,以此提高数据库管理技能,使实验对象掌握基本的CRUD操作和视图的概念。此外,还演示了在事务中执行操作并通过回滚来维护数据完整的技巧。实验具体运用到了插入新学生信息进学生表、更新指定学生信息或成绩数据、清除表里全部数据、构建不同条件的视图等功能,最终增强了参与者的SQL理解和实践能力。 适用人群:面向高校学生或者从事相关数据库工作的技术人员,尤其是对SQL有一定基础的学习者,希望提升SQL实战水平的初级到中级开发者。 使用场景及目标:帮助学员理解SQL命令的实际意义与应用,熟练掌握常用的INSERT、UPDATE、DELETE、TRUNCATE TABLE和CREATE VIEW等语句,能够独立完成简单关系型数据库的数据增删查改操作,在真实的数据库环境中实施高效的数据管理方案。 其他说明:实验报告包含了大量关于语法正确性与逻辑合理性的注意点和提示,并鼓励使用者深入探究事务机制以保障大规模数据分析和处理过程的安全可靠性。

2025-01-01

SQL查询实践:掌握分组、连接、子查询及函数的数据库查询应用

内容概要:本文详细介绍了在《数据库系统原理》课程中关于数据查询的实验,涵盖了多个SQL查询操作的具体实践。实验主要内容包括分组查询、连接查询、子查询、查询命令中函数的使用以及集合查询的操作,并提供了详细的代码实例,如求课程总分、查找各专业人数等。同时讨论了可能出现的问题及其解决方法,总结了所学到的各种SQL查询语句的应用技巧和经验心得。 适合人群:对于有一定数据库理论基础,但缺乏实际操作经验的学习者,尤其适合作为大学计算机相关专业的学生学习SQL语句的基础练习。 使用场景及目标:旨在帮助学习者深入了解SQL语言中不同类型查询的应用,提高解决问题的能力,熟悉不同类型的查询操作,为将来从事数据分析、软件工程等相关工作打下良好基础。 阅读建议:本教程不仅有助于学习基本的SQL命令,还通过具体的例子加深对命令之间关系的理解,在学习过程中,建议动手操作练习以巩固知识点。

2025-01-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除