火锅TCP
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
71、数据安全与隐藏技术:Docker安全与3D魔方数据隐藏法解析
本文探讨了Docker镜像与容器的安全问题,并提出Docker镜像容器诊断系统(DICDS)以增强容器技术的安全性。同时,详细介绍了一种基于3D魔方的高容量双层数据隐藏方法,该方法通过构建3D魔方和参考空间,实现了较高的嵌入率和可接受的图像质量。实验结果表明,双层嵌入可达到4.00 bpp的嵌入率,平均PSNR为33.91 dB,具有广泛的应用前景,如军事通信、版权保护和医疗数据传输。最后,文章分析了数据隐藏技术的未来发展和挑战,包括多模态数据隐藏、自适应算法以及与人工智能的结合。原创 2025-07-22 08:31:33 · 68 阅读 · 0 评论 -
70、可否认的可学习加密与Docker镜像和容器安全
本文探讨了可否认的可学习加密方案在隐私保护机器学习中的应用,以及Docker镜像和容器的安全问题。通过对比ResNet和CNN模型在普通与加密图像上的训练准确性,展示了多模型预测技术在恢复加密导致的特征损失方面的有效性。同时,提出了一种新型的Docker镜像和容器诊断系统(DICDS),涵盖完整性、漏洞、恶意软件和可疑行为检查,旨在全面提升容器化部署的安全性。文章还分析了两种技术的应用场景、未来发展趋势与挑战,并为研究人员和用户提供了相关建议。原创 2025-07-21 09:29:29 · 48 阅读 · 0 评论 -
69、Learnable Encryption with Deniability: Protecting User Privacy in Cloud Machine Learning
本文介绍了可否认学习加密(Learnable Encryption with Deniability,LED),一种在云机器学习中保护用户隐私的新方法。LED结合了可学习加密和可否认加密技术,不仅防止云服务提供商(CSP)获取用户数据,还能在面对外部强制者时保护用户的真实行为。此外,文章还提出了一种通过多模型预测提高预测准确性的方法,并通过实验验证了该方法的有效性。研究结果表明,LED能够在保证机器学习性能的同时有效保护用户隐私,为未来云机器学习中的隐私保护提供了新的思路。原创 2025-07-20 14:30:10 · 46 阅读 · 0 评论 -
67、数字盗版与车载网络安全:理论与实践探索
本博文围绕数字盗版行为研究与车载网络安全探索展开,分别从理论和实践角度分析相关问题。在数字盗版研究中,通过常用行为理论与TDF框架的映射,整合出态度、习惯和意识三个核心构建组,为干预措施提供理论支持。而在车载网络安全方面,提出了基于域网关的轻量级无监督IDS解决方案,以解决现有入侵检测系统的局限性。通过模型设计与优化,实现了高准确性检测,为保障车载网络安全性提供了新思路。研究强调了理论与技术的结合,对于应对未来数字盗版和车载网络安全挑战具有重要意义。原创 2025-07-18 11:59:59 · 35 阅读 · 0 评论 -
66、区块链汽车共享与数字盗版行为研究
本文探讨了区块链技术在汽车共享领域的应用,详细介绍了一个基于区块链的去中心化汽车共享系统的租赁与归还流程,并分析其在数据安全、无勾结性、防篡改和可追溯性方面的性能优势。同时,文章还研究了数字盗版行为,采用理论领域框架(TDF)对相关行为理论进行综述,揭示了威慑理论、伦理理论和计划行为理论在解释数字盗版行为中的应用与局限。文章指出区块链技术在提升汽车共享系统安全性与透明度的同时,也为数字版权保护提供了新的思路,两个领域在数据安全与用户行为分析方面具有潜在的相互借鉴价值。原创 2025-07-17 10:42:34 · 38 阅读 · 0 评论 -
65、无线轮胎压力监测系统(WTPSS)设计分析与区块链汽车共享系统方案
本文探讨了无线轮胎压力监测系统(WTPSS)的设计与分析,重点研究了传感器睡眠周期对传输延迟和能耗的影响,并提出了基于区块链的去中心化汽车共享系统方案。通过数学分析和实验验证,优化了传感器的周期设置以提高系统效率;同时,利用区块链和智能合约技术解决了传统汽车共享系统中的数据安全、公平性和可追溯性问题。文章还提出了系统优化建议和未来发展方向,为无线传感器网络和区块链技术在相关领域的应用提供了新思路。原创 2025-07-16 11:44:41 · 33 阅读 · 0 评论 -
64、5G网络切片可扩展性与无线轮胎压力传感系统研究
本博文围绕5G网络切片的可扩展性与无线轮胎压力传感系统(WTPSS)的设计展开研究。在5G网络部分,基于MDAF架构实现了对AMF的动态扩展和负载均衡,显著提升了UE注册成功率和系统稳定性。在无线轮胎压力传感系统方面,提出了一种考虑数据传输延迟与节能的方案,并通过实验验证了系统在实际应用中的可靠性与高效性。研究为5G网络管理和智能交通系统的优化提供了理论支持与实践参考。原创 2025-07-15 13:52:30 · 49 阅读 · 0 评论 -
63、基于MDAF的5G网络切片可扩展性研究
本博客研究基于MDAF的5G网络切片可扩展性架构,旨在解决5G核心网络中AMF在处理大量UE注册请求时的过载问题。通过引入MDAF和负载均衡器,结合多个AMF实例实现动态扩展与负载均衡,有效降低注册时间,保持AMF CPU使用的稳定性,从而提高5G网络切片的灵活性和可靠性。实验结果表明,该架构在注册效率和资源管理方面显著优于传统单AMF架构。原创 2025-07-14 10:46:03 · 80 阅读 · 0 评论 -
62、安全通信的物理层编码与密码分析及 5G 网络切片可扩展性研究
本博客探讨了安全通信中物理层编码与密码分析的结合,以及其在提升通信安全性中的作用。同时,研究了5G网络切片中基于管理数据分析功能(MDAF)的可扩展性方案,重点解决了AMF容量不足的问题。通过理论分析和实验测试,展示了物理层编码与加密结合的优势,以及MDAF系统在提升注册成功率、降低处理时间和保持CPU稳定方面的有效性。原创 2025-07-13 09:39:40 · 43 阅读 · 0 评论 -
61、从物联网数据到领域知识:智慧农业探索案例
本文探讨了如何将物联网(IoT)收集的多维数据转化为智慧农业中的领域知识。以实验茶园为例,通过传感器收集环境特征数据,并提出一种结合关联矩阵、主成分分析和多准则决策分析的方法,将离散数据转化为可操作的领域知识。研究构建了语义网络以推荐知识,并通过实际案例验证了方法的有效性。尽管需要长期数据支持和缺乏自适应机制存在局限,但该方法为智慧农业的决策支持提供了新思路。原创 2025-07-12 09:41:16 · 46 阅读 · 0 评论 -
60、在线虚拟现实服务开发的趋势与评估
本文探讨了在线虚拟现实服务开发的趋势与评估,分析了疫情对数字游览发展的影响,并重点研究了基于WebVR和PWA技术的系统集成设计与开发过程。通过开发者访谈、AT-ONE分析和AHP问卷等方法,研究提出了服务需求、功能需求和技术需求的整合框架,并围绕跨平台兼容性、沉浸式体验和系统可扩展性等核心目标,设计了适用于多终端设备的应用模型。最终总结了技术开发方向,并建议进一步优化数据收集、界面设计和商业模式,以提升在线虚拟现实服务的质量和可持续性。原创 2025-07-11 14:41:27 · 38 阅读 · 0 评论 -
59、基于随机梯度下降的最大间隔早期事件检测与基于AHP的渐进式Web应用在线虚拟现实服务开发
本博客围绕两个主要研究领域展开:一是基于随机梯度下降机制的早期事件检测方法(PMMED),通过将Pegasos算法融入MMED框架,提升了检测效率并在部分数据集中实现了更早的目标事件识别;二是基于AHP评估的渐进式Web应用(PWA)与WebVR结合的在线虚拟现实服务开发,强调了跨平台兼容性在系统设计中的重要性。研究通过多个数据集验证了PMMED的有效性,并通过专家问卷分析了PWA在虚拟现实服务中的关键优势。未来的工作将聚焦于算法优化与用户行为数据分析,以提升复杂场景下的系统性能与用户体验。原创 2025-07-10 12:39:13 · 37 阅读 · 0 评论 -
58、直播对个人购买行为的影响及随机梯度下降在早期事件检测中的应用
本文探讨了直播对个人购买行为的影响,结合社交互动理论和信息系统成功模型,通过问卷调查和结构方程分析,研究信息质量、系统质量和社交互动对商业意向和客户满意度的关系。同时,文章还研究了随机梯度下降方法在早期事件检测中的应用,展示了其在处理大规模数据时的高效性和灵活性,并探讨了其在医疗和金融领域的潜在应用。原创 2025-07-09 14:26:26 · 38 阅读 · 0 评论 -
57、角色扮演游戏玩家行为剖析与直播对个人购买行为的影响
本博客主要探讨了角色扮演游戏玩家行为的特点以及直播对个人购买行为的影响。在角色扮演游戏玩家行为分析中,通过构建玩家模型和行动优先级模型(APM)对比,发现相似APM带来相似的遭遇战贡献,但缩短动作间隔不一定带来最佳表现。在直播对购买行为的影响研究中,基于信息系统成功模型(ISSM),分析了信息质量、系统质量和社交互动对用户满意度和商业行为的相互作用。最后,为游戏和直播行业提供了优化建议,并展望了未来的研究方向。原创 2025-07-08 13:31:55 · 94 阅读 · 0 评论 -
56、编程学习与游戏玩家行为分析的研究洞察
本博客探讨了编程学习和角色扮演游戏玩家行为分析的研究洞察。在编程学习领域,AI2被证实对学习者掌握基本编程概念、学习迁移、项目开发等方面具有显著的积极影响。通过基于模拟的学习系统,新手在编程两阶段中解决问题的技能得到了明显提升。在游戏玩家行为分析方面,研究提出了行动优先级模型(APM),通过过程挖掘技术从游戏日志中挖掘玩家行为模式,从而帮助玩家优化行动策略,提高游戏表现。博客总结了AI2在编程教育中的潜力,以及过程挖掘技术在游戏分析中的应用价值,并对未来研究方向提出了展望。原创 2025-07-07 13:59:53 · 31 阅读 · 0 评论 -
55、网络防御与编程学习:技术探索与实践成果
本文探讨了软件定义网络(SDN)中SYN洪泛攻击的防御技术,重点介绍了改进的SLICOTS和S-RST方法,并通过实验验证了S-RST在减轻服务器负担、加快攻击恢复时间方面的有效性。同时,文章还研究了基于块的可视化编程学习(如App Inventor 2)对新生编程技能和问题解决能力的提升作用,展示了模拟学习系统在教学中的具体应用与积极效果。最后,文章比较了网络防御与编程学习技术的发展潜力,并展望了未来结合人工智能与教育创新的方向。原创 2025-07-06 12:20:22 · 40 阅读 · 0 评论 -
54、基于KNN的GNSS坐标分类用于疫情管理及SDN中TCP攻击的轻量级对策
本文探讨了基于KNN的GNSS坐标分类技术在疫情管理中的应用,以及SDN中应对TCP攻击的轻量级对策。研究利用K近邻算法高效处理大规模目标和区域数据,为疫情追踪和管控提供技术支持;同时提出改进的SLICOTS方法与S-RST算法,有效缓解SDN中TCP SYN洪水攻击的影响,提升网络安全防护能力。文章还通过模拟实验验证了不同密度和k值对分类精度的影响,并展望了技术在疫情管理与网络安全领域的应用前景。原创 2025-07-05 11:17:37 · 27 阅读 · 0 评论 -
53、高性能计算与科技教育融合:从DMA控制器到帆船课程的创新探索
本文探讨了高性能计算(HPC)与科技教育(STEM)的融合,重点介绍了链接列表直接内存访问控制器(LDMAC)的设计与实现,以及基于STEM教育理念的机器人帆船课程开发。LDMAC通过边界检查器、地址生成器、打包解包缓冲区和双缓冲机制,显著提高了数据访问和传输效率,为计算密集型任务提供了高效解决方案。机器人帆船课程则通过设计、组装和测试遥控帆船,将科学、技术、工程和数学知识融入实践教学,并利用CFD分析和增强现实技术帮助学生理解复杂的物理原理。课程实验表明,这种创新的STEM教学方法能够有效激发学生兴趣,提原创 2025-07-04 14:23:47 · 35 阅读 · 0 评论 -
52、探索CNN加速器与LDMAC:性能分析与创新设计
本博客围绕CNN加速器与创新设计的链接列表DMA控制器(LDMAC)展开深入分析。首先详细介绍了全连接层的操作流程,并通过构建System Verilog测试平台验证功能正确性。基于LeNet、AlexNet、VGG16、GoogleNet和MobileNet等模型对BMCOC的性能进行评估,比较其与CPU、Cortex-M55和GPU的性能差距。针对CNN模型操作中数据流管理的挑战,提出了支持三维数据块访问和高度灵活数据安排的LDMAC设计方案,详细解析了其系统架构、DMA列表结构以及DMA List N原创 2025-07-03 10:07:10 · 32 阅读 · 0 评论 -
51、基于多流SIMD机制的CNN加速器设计与矩阵运算优化
本文探讨了基于多流SIMD机制的CNN加速器设计与矩阵运算优化方法。首先,通过定义行列运算并结合CORDIC电路实现矩阵运算加速,提出了Row Major操作设计、块存储方法和递归CORDIC单元,以减少内存访问和加速运算。其次,设计了支持并行计算的BMCOC处理器架构,结合零开销硬件循环和权重数据重排策略,优化了CNN的卷积层、最大池化层和全连接层的操作流程。实验结果表明,该架构在嵌入式环境下具有高性能和低功耗的优势,并在MobileNet模型上实现了显著的加速效果。原创 2025-07-02 13:53:12 · 34 阅读 · 0 评论 -
50、矩阵分解算法优化计算架构的设计与实现
本博文提出了一种针对矩阵分解算法的优化计算架构,旨在解决大规模矩阵运算中数据访问效率低和硬件扩展性差的问题。通过采用CORDIC运算单元、自适应数据排列、向量运算构建、块存储的IO缓冲区设计以及收缩和移位操作等优化手段,有效提高了矩阵运算的并行性和计算效率。实验结果表明,该架构在特征值分解和奇异值分解任务中表现出显著的速度优势,特别是在大规模矩阵处理方面,与传统计算机环境相比实现了数十倍的速度提升。未来工作将聚焦于进一步优化奇异值分解算法及探索更先进的硬件实现方案。原创 2025-07-01 12:28:41 · 49 阅读 · 0 评论 -
49、结合权限和 API 特征的安卓恶意软件分类器研究
本研究提出了一种结合权限和API特征的安卓恶意软件分类器,通过线性模型学习两者组合的权重,并使用软投票机制提高检测能力和可持续性。研究利用2012年至2019年的样本数据验证模型性能,结果显示该方法在F1-Score和AUT指标上均优于仅使用API、仅使用权限或其他相关研究方法,具有良好的跨年份检测稳定性和广泛的分类算法适应性。原创 2025-06-30 13:20:02 · 41 阅读 · 0 评论 -
48、IoT网络分析与Android恶意软件检测研究
本研究探讨了物联网(IoT)网络的安全风险与Android恶意软件检测的挑战。在IoT网络分析方面,分析了东亚地区MQTT代理的风险分布和应用领域,发现韩国的物联网网络较为安全,而台湾和日本的部分代理存在较高风险。同时,研究了智能交通控制、供水系统和电动汽车监控等应用的安全隐患,强调了加强CIA三元保护的重要性。在Android恶意软件检测方面,针对模型老化问题,提出了一种结合API和权限特征的检测系统,并采用软投票决策机制,有效提高了检测的可持续性和性能。原创 2025-06-29 15:38:54 · 52 阅读 · 0 评论 -
47、生物识别验证与MQTT物联网分析框架研究
本博文研究了生物识别验证方案与MQTT物联网分析框架。生物识别验证方案创新性地保护用户生物特征隐私,但计算和通信性能有待优化。MQTT分析框架通过侦察、代理利用和风险标记三个阶段,帮助安全分析师快速识别潜在风险的MQTT代理,并定义了四个风险级别和十个应用领域。框架在东亚地区的应用实例表明其在物联网安全中的实用性,同时指出了框架的局限性和未来发展方向。原创 2025-06-28 14:08:11 · 32 阅读 · 0 评论 -
46、精细生物特征验证的稳健双因素认证方案
本文提出了一种精细生物特征验证的稳健双因素认证方案,结合密码和生物特征,解决了传统认证方式的安全性和用户体验问题。该方案通过RSA加密和模糊提取器技术,实现了相互认证、可靠的生物特征隐私保护,并抵御多种攻击方式。同时,文章对该方案的安全性、通信和计算成本进行了详细分析,表明其在安全性和性能方面具有良好的表现。原创 2025-06-27 11:21:07 · 50 阅读 · 0 评论 -
45、图像加密与节点安全方案的创新探索
本文探讨了两种创新性的安全方案:一种基于物理不可克隆函数(PUF)的节点安全方案,通过降低功耗和生成真随机值,实现高效安全的节点通信;另一种是基于直方图移位嵌入的图像压缩与有意义密文加密方法,通过提高密文质量和增强安全性,解决了传统图像加密方法中密文易被检测和攻击的问题。这两种方案在工业物联网、医疗图像传输等领域具有广泛的应用前景。原创 2025-06-26 14:27:14 · 30 阅读 · 0 评论 -
44、制造环境中基于物理不可克隆函数的轻量级鲁棒认证与密钥协商方案
本文提出了一种基于物理不可克隆函数(PUF)的轻量级鲁棒认证与密钥协商方案,旨在解决制造环境中嵌入式系统的安全通信问题。该方案结合PUF的唯一性和随机性、Diffie-Hellman密钥交换以及SHA-256哈希算法,实现节点间的相互认证和安全密钥建立。通过引入预共享密钥和时间戳机制,有效抵御中间人攻击和重放攻击。同时,性能评估表明该方案计算成本低,适用于资源受限的制造环境。原创 2025-06-25 15:26:03 · 44 阅读 · 0 评论 -
43、基于变体堆叠去噪自编码器与逻辑回归的JavaScript代码检测器
本文介绍了一种基于变体堆叠去噪自编码器(SdA)与逻辑回归(LR)相结合的JavaScript恶意代码检测模型。该模型通过数据预处理、AST特征向量生成、无监督预训练SdA和有监督微调SdA-LR检测器四个阶段,有效应对代码混淆技术,提高检测准确性和鲁棒性。实验表明,该模型在多个性能指标上优于现有方法,具有良好的训练效率和可扩展性,适用于实际恶意代码检测场景。原创 2025-06-24 15:00:56 · 75 阅读 · 0 评论 -
42、安卓恶意软件与恶意 JavaScript 检测技术解析
本文详细解析了两种针对网络安全威胁的检测技术:一是基于系统调用序列与局部TF-IDF方法的安卓恶意软件检测,二是应对混淆技术的恶意JavaScript检测模型SdA-LR。文章介绍了两种技术的原理、实验设计及结果,对比了其检测方法和优势,并提出了未来发展方向。研究表明,两种方法在各自的应用场景中均表现出较高的准确率和良好的适应性,为应对日益复杂的恶意软件威胁提供了有效的解决方案。原创 2025-06-23 10:20:16 · 49 阅读 · 0 评论 -
41、图像水印算法与安卓恶意软件检测技术研究
本文围绕图像水印算法与安卓恶意软件检测技术展开研究。在图像水印方面,提出基于Stegastamp模型改进的ScreenNet算法,通过引入莫尔网络增强水印在不同攻击下的鲁棒性,并分析其在不同容量、噪声、截图角度下的性能表现。在安卓恶意软件检测方面,采用动态分析方法,结合系统调用序列的前后关系与局部特征计算,通过子序列划分与TF-IDF加权提升分类准确性。最后总结了两种技术的优势与改进方向,并展望了未来可能的跨领域融合与算法创新。原创 2025-06-22 10:07:07 · 50 阅读 · 0 评论 -
40、网络安全信息自动摘要与档案图像反截图水印算法研究
本文探讨了网络安全领域的两项关键技术:关键威胁情报自动摘要和档案图像反截图水印算法。前者通过实验验证了基于ROUGE指标的自动摘要方法在网络安全报告和新闻中的有效性,能够帮助组织快速获取威胁信息;后者提出了基于深度学习的ScreenNet模型,结合风格迁移和莫尔纹网络,有效增强了档案图像在截图场景下的水印鲁棒性和检测率。文章还展望了未来研究方向,包括扩展摘要信息、优化算法性能、应对复杂攻击等。这两项技术为网络安全信息处理和数据保护提供了有力支持。原创 2025-06-21 12:27:21 · 35 阅读 · 0 评论 -
39、基于GAN的犯罪嫌疑人面部生成器与威胁情报自动摘要技术
本文探讨了基于生成对抗网络(GAN)的犯罪嫌疑人面部生成技术和威胁情报自动摘要技术的研究与应用。在犯罪嫌疑人面部生成部分,结合DCGAN、StyleGAN和PULSE方法,实现了根据特定面部特征生成逼真图像,并通过风格迁移逐步优化图像质量。在威胁情报自动摘要部分,提出了一种基于迁移学习的BERT-BiLSTM模型,用于从网络安全文档中高效提取关键信息并生成摘要。文章分析了两种技术的优缺点,并展望了未来发展方向,旨在提升犯罪调查效率和网络安全防护能力。原创 2025-06-20 13:15:08 · 38 阅读 · 0 评论 -
38、基于视觉的轻量级面部呼吸与心率检测及GAN犯罪嫌疑人面部生成技术
本文介绍了两种基于先进技术的方法:一种是基于视觉的轻量级面部呼吸与心率检测技术,通过多特征信号收集和优化计算策略,实现了高精度检测;另一种是基于生成对抗网络(GAN)的犯罪嫌疑人面部生成技术,结合DCGAN和StyleGAN的优势,提供了一种快速、客观且用户友好的嫌疑人面部重建方案。这两种技术分别在医学健康监测和犯罪调查领域展现出巨大的应用潜力。原创 2025-06-19 09:25:07 · 36 阅读 · 0 评论 -
37、基于视觉的轻量级面部呼吸和心率测量技术
本文提出了一种基于视觉的轻量级面部呼吸和心率测量技术,通过远程光电容积脉搏波描记法(RPPG)和面部振动信息实现非接触式生理信号采集。创新性地结合框选和特征点选择多个感兴趣区域(ROI),并采用光流跟踪、主成分分析(PCA)和集成经验模态分解(EEMD)等方法优化信号处理流程。实验结果表明,该方法在测量精度和稳定性方面优于传统方法,并可在树莓派4等低功耗平台上实现实时运行,具有广泛的应用前景。原创 2025-06-18 13:49:44 · 101 阅读 · 0 评论 -
36、基于重放的持续学习中的困难感知混合方法
本文针对持续学习中深度神经网络面临的灾难性遗忘问题,提出了一种基于重放的困难感知Mixup方法。通过引入Mixup增强重放样本的多样性,并根据样本难度动态调整Mixup系数,从而减少困难样本的模糊性,提升模型在持续学习场景下的性能。实验表明,该方法在多个数据集(如CIFAR10、CIFAR100、miniImageNet)和不同重放方法(ER、DER、DER++)中均能显著提高平均准确率并降低遗忘率,尤其在小缓冲区设置下效果更为突出。原创 2025-06-17 09:39:27 · 35 阅读 · 0 评论 -
35、基于菱形识别方法的实时有意眨眼检测技术解析
本文介绍了一种基于菱形识别方法(RIM)的实时有意眨眼检测技术,用于激活智能安全系统。与传统的眼宽高比(EAR)方法相比,RIM方法通过计算眼睛轮廓和归一化面积,显著提高了检测的准确性和鲁棒性。实验结果显示,RIM方法在不同场景下的平均准确率明显优于EAR方法,尤其在左眼闭合且右眼睁开的情况下表现优异。结合机器学习,RIM方法被成功集成到智能安全系统中,证明了其正确激活概率高、误激活概率低,具有实际应用价值。原创 2025-06-16 13:52:33 · 63 阅读 · 0 评论 -
34、中年不健康皮肤面部预测与实时有意眨眼检测技术解析
本文探讨了中年不健康皮肤面部预测与实时有意眨眼检测技术的原理、方法及实验结果。前者基于MTCNN、VGG19和SVM构建模型,用于识别中年人面部皮肤健康状况;后者提出有意眨眼机制和菱形识别方法(RIM),以提升眨眼检测的准确性。实验结果表明,两种技术在各自领域均表现出色,具有广泛的应用前景,包括医学诊断、智能安防和人机交互等。原创 2025-06-15 16:14:05 · 37 阅读 · 0 评论 -
33、网页 API 半自动聊天机器人生成与中年不健康面部皮肤预测
本文探讨了网页 API 半自动聊天机器人的生成方法以及基于 VGG19 和支持向量机的中年不健康面部皮肤预测技术。聊天机器人部分介绍了使用 BotSwagger 和 BOTEN 工具快速生成 Rasa 配置文件的流程,并结合 GitHub 实现版本控制和训练语句扩展机制,以提高意图识别的准确性和模型泛化能力。医疗预测部分采用 MTCNN 进行面部检测,利用 VGG19 提取特征,并通过 SVM 实现对面部皮肤健康状况的分类,准确率达到 92.2%。文章通过实验验证了训练语句扩展的有效性,并展示了两种技术在智原创 2025-06-14 13:51:55 · 27 阅读 · 0 评论 -
32、机器学习分类模型与半自动化聊天机器人生成技术
本博客探讨了机器学习分类模型在台湾股市预测中的应用,以及半自动化聊天机器人生成技术的研究与实践。在股市预测部分,使用随机森林、逻辑回归和支持向量机模型,基于多个特征对台湾股票期货的涨跌进行预测,并通过准确率、精确率、召回率等指标评估模型性能。结果显示,L.R. III模型的准确率最高,SVM III在预测上涨方面表现最佳。在聊天机器人技术方面,提出了一种基于模型驱动工程的BOTEN方法,通过BotSwagger格式和SCASG技术实现聊天机器人的半自动化生成,显著降低了开发复杂性并提升了自然语言理解能力。未原创 2025-06-13 10:58:52 · 71 阅读 · 0 评论 -
31、云环境下 vIMS 扩展模型与台湾股市预测分类算法研究
本研究围绕云环境下vIMS扩展模型与台湾股市预测分类算法展开。在vIMS扩展模型部分,提出了一种基于回归方法的扩展预测模型,通过实验验证了模型在不同呼叫率下的有效性,并分析了资源组合对服务完成率(SCR)的影响。在台湾股市预测部分,比较了随机森林、逻辑回归和支持向量机等多种分类模型的预测能力,并探索了结合台湾股市与美国NASDAQ指数数据作为特征对预测准确性的影响。研究表明,使用跨市场数据融合能够提升预测效果,其中SVM III模型在上涨趋势预测中表现优异。研究成果为云环境下NFV系统的资源扩展决策与股市预原创 2025-06-12 10:08:49 · 19 阅读 · 0 评论
分享