HDU 5046(舞蹈链)

题意:二维平面上有n个点,要求选取至多k个点,使得每个点到离它最近的点的距离最大值最小。
解法:二分距离,用重复覆盖判断选出的点数。
但这个题直接求可以选出的最少点数会t,所以要在剪枝的时候加一点特殊的技巧。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <complex>
//#include <tr1/unordered_set>
//#include <tr1/unordered_map>
#include <bitset>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define inf (1e18)
#define debug(a) cout << #a" = " << (a) << endl;
#define debugarry(a, n) for (int i = 0; i < (n); i++) { cout << #a"[" << i << "] = " << (a)[i] << endl; }
#define clr(x, y) memset(x, y, sizeof x)
#define LL long long
#define ll long long
#define uLL unsigned LL

using namespace std;

const int maxn = 60 *60 * 2;

int k;

struct sad
{
    int L[maxn],R[maxn],U[maxn],D[maxn];
    int Row[maxn],Col[maxn];
    int h[maxn] , s[maxn];
    int si,ans;
    void init(int m)
    {
        for(int i=0;i<=m;i++)
        {
            U[i] = D[i] = i;
            L[i] = i-1;
            R[i] = i+1;
            s[i] = 0;
        }
        L[0] = m;
        R[m] = 0;
        clr(h,-1);
        si=m;
        ans=2132;
    }
    void link(int row,int col){
        si++;
        Col[si] = col;
        Row[si] = row;
        s[col]++;
        U[si] = U[col];
        D[si] = col;
        D[U[col]] = si;
        U[col] = si;
        if(h[row]!=-1)
        {
            R[si] = h[row];
            L[si] = L[h[row]];
            R[L[si]] = si;
            L[R[si]] = si;
        }else
            h[row] = L[si] = R[si] = si;
    }
    void Remove(int c)
    {
        for(int i=D[c];i!=c;i=D[i]){
            L[R[i]] = L[i];
            R[L[i]] = R[i];
        }
    }
    void Resume(int c)
    {
        for(int i=U[c];i!=c;i=U[i]){
            L[R[i]] = R[L[i]] = i;
        }
    }
    int vis[maxn];
    int H()
    {
        int ret=0;
        for(int i=R[0];i!=0;i=R[i])
            vis[i] = 0;
        for(int i=R[0];i!=0;i=R[i]) if(!vis[i]){
            ret++;
            vis[i] = 1;
            for(int j=D[i];j!=i;j=D[j])
                for(int k=R[j];k!=j;k=R[k])
                    vis[Col[k]] = 1;
        }
        return ret;
    }
    void dfs(int cnt)
    {
        if(cnt+H() > k) return ;
        if(R[0]==0){
            ans = min(ans,cnt);
            return ;
        }
        int c=R[0];
        for(int i=R[0];i!=0;i=R[i])
            if(s[c]>s[i]) c=i;
        for(int i=D[c];i-c;i=D[i]){
            Remove(i);
            for(int j=R[i];j-i;j=R[j])
                Remove(j);
            dfs(cnt+1);
            if( ans <= k ) return ;
            for(int j=L[i];j!=i;j=L[j])
                Resume(j);
            Resume(i);
        }
        return ;
    }
}dlx;

int x[maxn],y[maxn];
int n;

ll cal(int i,int j){
    return (ll)abs(x[i]-x[j]) + (ll)abs(y[i]-y[j]);
}

vector<pair<ll,pair<int,int> > >Q;

bool cal(ll D){
    dlx.init(n);
    for(int i=0;i<Q.size();i++)
    {
        if( Q[i].first > D ) break;
        dlx.link( Q[i].second.first , Q[i].second.second );
    }
    dlx.dfs(0);
    return dlx.ans <= k;
}

int main(){
//    freopen("input.txt","r",stdin);
    int T,CASE=0;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)
            scanf("%d%d",&x[i],&y[i]);
        ll l=0,r=0,ans;
        Q.clear();
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
            {
                r = max(r,cal(i,j));
                Q.push_back( make_pair( cal(i,j) , make_pair(i,j) ) );
            }
        sort(Q.begin(),Q.end());
        ans = r;
        while( l <= r )
        {
            ll mid=l+r>>1;
            if( cal(mid) )
            {
                ans = min(ans,mid);
                r = mid - 1;
            }else l = mid + 1;
        }
        printf("Case #%d: %I64d\n",++CASE,ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值