GPU加速
文章平均质量分 64
R_hgt
这个作者很懒,什么都没留下…
展开
-
利用DSHOW中的VMR9 filter 将视频渲染成纹理 供D3D使用
先说下VMR9,这个 filter是个视频混合的组件,可以很方便的将多路视频合成一路视频,添加字幕和静态图片,这个组件的内部实现采用了DX9的接口。如果想把VMR9混合输出后的视频图像当作纹理渲染到3D模型上,一个办法就是通过实现一个分配-演示器对象,然后将此对象替换掉VMR9中的默认分配-演示器对象。所谓分配演示器对象指的是一个实现了VMR9规定的的分配接口和演示接口的对象。也就是此对象实现转载 2015-04-23 11:38:47 · 2324 阅读 · 0 评论 -
GPU硬编码---NVCUVENC
一、OpenCV中的硬编码OpenCV2.4.6中,已实现利用GPU进行写视频,编码过程由cv::gpu::VideoWriter_GPU完成,其示例程序如下:int main(int argc, const char* argv[]){ if (argc != 2) { std::cerr " << std::endl; retu转载 2015-04-20 16:05:00 · 3292 阅读 · 0 评论 -
GPU硬解码---CUVID
问题描述:项目中,需要对高清监控视频分析处理,经测试,其解码过程所占CPU资源较多,导致整个系统处理效率不高,解码成为系统的瓶颈。解决思路:利用GPU解码高清视频,降低解码所占用CPU资源,加速解码过程。一、OpenCV中的硬解码OpenCV2.4.6中,已实现利用GPU进行读取视频,由cv::gpu::VideoReader_GPU完成,其示例程序如下:i转载 2015-04-20 16:01:22 · 2249 阅读 · 1 评论 -
基于DXVA的多路H.264高清视频解码器的实现
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------转载 2015-04-20 17:13:16 · 2635 阅读 · 0 评论 -
OpenCV中GPU模块使用
CUDA基本使用方法在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下:1.主机代码执行;2.传输数据到GPU;3.确定grid,block大小;4.调用内核函数,GPU运行程序;5.传输结果到CPU;6.继续主机代码执行。下图是两个向量相加的简单示例程序和处理流图:注意的问题:cu,cpp文件的组织转载 2015-04-20 15:58:28 · 2395 阅读 · 0 评论 -
GPU硬解码---DXVA
前面介绍利用NVIDIA公司提供的CUVID库进行视频硬解码,下面将介绍利用DXVA进行硬解码。一、DXVA介绍 DXVA是微软公司专门定制的视频加速规范,是一种接口规范。DXVA规范制定硬件加速解码可分四级:VLD,控制BitStream;IDCT,反余弦变换;Mocomp,运动补偿,Pixel Prediction;PostProc,显示后处理。其中,VLD加速等级最高,所转载 2015-04-20 16:11:05 · 6410 阅读 · 1 评论