SDUTOJ 2772 KMP简单应用

本文介绍了一种高效的字符串匹配算法——KMP算法,并提供了完整的C++实现代码。该算法通过预处理模式串来减少不必要的比较,提高了搜索效率。
#include<iostream>
#include<string.h>
#include<stdio.h>
#define N 10000001
using namespace std;
char s[N],s1[N];
int next[N];
void getnext(char s1[])
{
	int j=-1,i=0,len;
	next[0]=-1;
	len=strlen(s1);
	while(i<len)
	{
		if(j==-1||s1[i]==s1[j])
		{
			++i;
			++j;
			next[i]=j;
		}
		else
			j=next[j];
	}
}
int KMP(char s[],char s1[])
{
    int len,len1,i=0,j=0;
	len=strlen(s);
	len1=strlen(s1);
	while(i<len && j<len1)
	{
		if(j==-1||s[i]==s1[j])
		{
			++i;
			++j;
		}
		else
			j=next[j];
	}
	if(j>=len1)
		return i-len1+1;
	else
		return -1;
}
int main()
{
	int m;
	while(scanf("%s",s)!=EOF)//这里按照常理可以使用gets(s)!=NULL,但是在SDUTOJ上就是WR..所以只能用scanf输入.
	{
		scanf("%s",s1);
		getnext(s1);
		m=KMP(s,s1);
		cout<<m<<endl;
	}
	return 0;
}



内容概要:本文介绍了基于Zernike矩的乳腺肿块良恶性分类方法,结合快速相反权重学习规则,在Matlab平台上实现了医学图像特征提取与分类的自动【基于Zernike矩的良性和恶性肿块的分类】应用于乳腺癌诊断中的快速相反权重学习规则(Matlab代码实现)化流程。Zernike矩用于提取乳腺肿块的形状和纹理特征,具有良好的旋转不变性,适用于医学图像分析;快速相反权重学习规则则用于优化分类过程,提高诊断准确率和效率。文中提供了完整的Matlab代码实现,便于研究人员复现和进一步优化算法。此外,文档还列举了多个相关科研方向和技术应用,展示了该方法在生物医学工程与智能诊断系统中的潜力。; 适合人群:具备一定Matlab编程基础,从事医学图像处理、模式识别、人工智能或生物医学工程领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于乳腺癌早期辅助诊断系统,提升医学影像分析的自动化水平;②作为科研教学案例,帮助理解图像特征提取(如Zernike矩)与智能分类算法的结合应用;③为优化医学图像分类模型提供可复现的技术路径与代码参考。; 阅读建议:建议读者结合提供的Matlab代码逐模块运行与调试,深入理解Zernike矩的特征提取机制及分类器训练过程,同时可拓展学习文档中提及的相关算法(如支持向量机、深度学习等),以构建更高效的医学图像分析系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值