神经网络学习
文章平均质量分 56
划水并快乐着
这个作者很懒,什么都没留下…
展开
-
吴恩达机器学习笔记-10评估假设等
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录一、评估假设算法性能好坏二、偏差和方差问题三、正则化参数λ选择四、样本不平衡问题五、支持向量机(SVM) 一、评估假设算法性能好坏 将数据分成训练集和测试集,典型方法是7:3比例,为了防止数据集有规律对结果影响,可以随机选择 评估一个已经学习过的方法:0/1假设 评估模型:用交叉验证集去验证模型好坏,并且使用测试集进行评估 要吧数据分成:测试集/验证集和训练集 原因是:评估不同模型之间的好坏可以用测试集,但是评估本身模型在调参前后原创 2021-12-17 08:25:16 · 179 阅读 · 0 评论 -
机器学习-吴恩达笔记整理1(9章结束)
机器学习-吴恩达笔记整理: 反向传播的梯度检测: 一些知识点 1.反向传播 是计算代价函数关于所有参数的导数或者偏导数的方法 2.梯度检测 检测的方法: 伪代码: 目的: 验证反向传播中计算出的导数是否等于或者是在数值上非常接近用反向传播计算出的导数,如果两种方法计算出的导数是一样的后者很接近,说明反向传播计算是正确的 注意: 检验完之后记得关闭 不然在训练时很慢,梯度检验是帮助验证反向传播是否正确 随机初始化: 初始化目的:在训练前要对theta进行初始化,初始化后就可以通过梯度下降来最小化函数 例如原创 2021-10-27 10:50:25 · 94 阅读 · 0 评论 -
tensorflow 学习笔记(1)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、tensorflow处理结构二、具体描述1.张量2 变量3.操作4 会话5优化器(optimizer) 前言 在这里记录一些tensorflow学习的笔记,视频学习地址: https://www.bilibili.com/video/BV194411T7BB?p=22 一、tensorflow处理结构 tensorflow是一种声明式编程, 张量-相当于数据,表示高维数据的抽象。存储节点是变量。placeholder 描原创 2020-08-27 22:41:26 · 183 阅读 · 0 评论 -
神经网络学习笔记8.26
神经网络的学习笔记 从今天开始系统学习神经网络和机器学习,记一个笔记帮助学习。在学习中遇到的问题用来记录。每天打卡~~~~ 机器学习的作用 从数据中抽取规律,并用来预测未来。主要应用有:分类问题,回归问题和排序问题和生成问题。我主要关注的是回归问题。 文章目录神经网络的学习笔记机器学习的作用前言一、机器学习基础1 机器学习岗位职责2深度学习分类二、神经网络1.神经元2.激活函数:3 目标函数(损失函数)4 神经网络训练梯度下降算法三 、tensorflow2.读入数据总结功能快捷键合理的创建标题,有助于目原创 2020-08-27 08:52:43 · 327 阅读 · 0 评论