二分法作为分治中最常见的方法,在各种比赛中经常出现(如:POJ 1434),但只适用于单调函数,若遇到凸(凹)函数求解极值,可采取三分的方法求解。凸(凹)函数在高数中的定义是:若函数的二阶导数在区间上恒大于0,则该函数在区间为凸函数;反之,小于0为凹函数。在比赛中面对一个问题而推出的求解函数f,求解其二阶导数不是那么容易。为了提高出题效率,可以根据题目所求做出大胆的假设:即若求最大值,则可假设函数为凸的;若求最小值,则可假设函数为凹的(当然求最短路等图论问题除外),具体的三分方法如图:
凸函数: