三分法(Ternary Search)求解凸(凹)函数的极值问题<方法篇>

本文介绍了在面对凸(凹)函数求极值时,如何利用三分法进行求解。针对求最大值和最小值的情况,可以假设函数为凸或凹,并提供了核心的程序段来实现这一方法。此方法适用于POJ 1434等比赛题目,文中还列举了其他相关题目如PKU3301, HDU2438等。" 124950681,7466172,laravel-admin安装与使用常见问题解决,"['PHP', 'Laravel', '数据库管理', '框架', '问题解决']
摘要由CSDN通过智能技术生成

二分法作为分治中最常见的方法,在各种比赛中经常出现(如:POJ 1434),但只适用于单调函数,若遇到凸(凹)函数求解极值,可采取三分的方法求解。凸(凹)函数在高数中的定义是:若函数的二阶导数在区间上恒大于0,则该函数在区间为凸函数;反之,小于0为凹函数。在比赛中面对一个问题而推出的求解函数f,求解其二阶导数不是那么容易。为了提高出题效率,可以根据题目所求做出大胆的假设:即若求最大值,则可假设函数为凸的;若求最小值,则可假设函数为凹的(当然求最短路等图论问题除外),具体的三分方法如图:

凸函数:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值