Matlab预分配内存

预分配内存简介:

对于for,while循环,在循环的过程中每次不断的增加数据结构的大小,影响了性能和内存的使用。重复的调整数据的大小需要Matlab花费额外的时间寻找更大的连续内存块,并且将现在的数组移动到连续的内存块中。通常可以通过预分配数组所需的最大内存来来改善代码的执行时间。

预分配数组

不同类型的数组的预分配函数:

数组类型函数例子
数值数组zerosy=zeros(1,100)
Cell 数组cellB=cell(2,3);B{1,3}=1:3;B{2,2}='string';
结构数组struct,repmatdata=repmat(struct('x',[1 3],'y',[5,6]),1,3)

如果你使用巨大的矩阵,那么预分配内存可以减少内存碎片。由于动态内存的分配以及重新分配,内存形成碎片。这样就产生了大量的空闲的内存,但是不能够分配容纳巨大变量的连续空间。预分配可以在计算的开始阶段,允许Matlab为大的数据结构“攫取”足够的空间。

预分配的变形

%1.明确的分配内存:使用zeros函数
clear data1, tic, data1 = zeros(1000,3000); toc
%2.含蓄的分配内存:只对数组的最后一个元素赋值
clear data1, tic, data1(1000,3000) = 0; toc

说明:新版本的Matlab改变了zeros函数的分配机制,所以使用zeros的方法要比第二个方法快很多。

预分配一个非double类型的矩阵

当你预分配一块内存来容纳某种类型的矩阵而不是doule类型的矩阵时,使用repmat函数更加有效,并且有时速度较快。
例如:
预分配一个100×100大小的uint8类型的矩阵。首先创建一个double类型的完整的矩阵,然后将该矩阵转换为uint8。其花费了时间,并且没必要的使用了内存。

A = int8(zeros(100));

使用repmat,仅需创建一个double类型的数值,然后减少了内存的需要。

A = repmat(int8(0), 100, 100);

当需要扩大数组时,使用repmat

当不能与分配内存的时候,可以使用repmat函数增加数组的大小,repmat函数试图为你扩展的数组寻找一块连续的内存。

例子1:

1.如何有效的初始化结构体数组(array of struct)?
例如:

a = []
for i = 1:100
  a(i).x = i;
end

答:
使用repmat是预分配结构体最高效的方式。

N = 10000;    
b = repmat(struct('x',1), N, 1 );

在Matlab2011b上进行了测试,其速度比使用索引的方式预分配内存块大约10倍(~10x faster),索引方式分配内存:

N      = 10000;
b(N).x = 1

索引方式只是比不预分配快一点:

No preallocation:            0.075524    
Preallocate Using indexing:  0.063774
Preallocate with repmat:     0.005234

可以通过下面的方式进行验证:

   clear;
        N = 10000;

    %1) GROWING A STRUCT
        tic;
        for ii=1:N
            a(ii).x(1)=1;    
        end
        noPreAll = toc;        

    %2)PREALLOCATING A STRUCT
        tic;
        b = repmat( struct( 'x', 1 ), N, 1 );
        for ii=1:N
            b(ii).x(1)=1;    
        end;  
        repmatBased=toc;        

    %3)Index to preallocate
        c(N).x = 1;
        for ii=1:N
            c(ii).x(1)=1;    
        end;  
        preIndex=toc;

        disp(['No preallocation:        ' num2str(noPreAll)])            
        disp(['Preallocate Indexing:    ' num2str(preIndex)])
        disp(['Preallocate with repmat: ' num2str(repmatBased)])
No preallocation:        0.075524    
Preallocate Indexing:    0.063774
Preallocate with repmat: 0.0052338

例子2

%例如计算不同姿态的平均形状,对平均形状mean_shape内存分配和初始化。
npose=5;
mean_shape=cell(npose,1);
for i=1:npose
    mean_shape{i}=zeros(nlandmark,2);
end

参考文献:
1. http://cn.mathworks.com/help/matlab/matlab_prog/preallocating-arrays.html
2. http://stackoverflow.com/questions/13664090/how-to-initialize-an-array-of-structs-in-matlab
3. https://cn.mathworks.com/help/matlab/math/resizing-and-reshaping-matrices.html#f1-88760
4. http://undocumentedmatlab.com/blog/preallocation-performance 预分配的性能
5. http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/matlab_prog/ch7_per4.html [Maximizing MATLAB Performance]

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值