Transformation (lazy) : 也称转换操作、转换算子
Actions (non-lazy):立即执行,也称动作操作、动作算子
对于转换操作,RDD的所有转换都不会直接计算结果
当遇到动作算子(Action)时才会进行真正计算
动作算子:
本质上动作算子通过SparkContext执行提交作业操作,触发RDD DAG(有向无环)的执行
所有的动作算子都是急迫型(non-lazy),RDD遇到Action就会立即计算
转换算子:
filter
过滤符合条件的记录数,true保留,false过滤掉
map
将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素
flatMap
先map后flat。与map类似,每个输入项可以映射为0到多个输出项
sample
随机抽样算子,根据传进去的小数按比例进行有放回或者无放回的抽样
reduceByKey
将相同的Key根据相应的逻辑进行处理
sortByKey/sortBy
作用在K,V格式的RDD上,对key进行升序或者降序排序
join,leftOuterJoin,rightOuterJoin,fullOuterJoin
作用在K,V格式的RDD上。根据K进行连接,对(K,V) join (K,W)返回 (K,(V,W))
join后的分区数与父RDD分区数多的那一个相同。
union
合并两个数据集。两个数据集的类型要一致。
返回新的RDD的分区数是合并RDD分区数的总和。
intersection
取两个数据集的交集
subtract
取两个数据集的差集
mapPartiton
与map类似,遍历的单位是每个partition上的数据。
distinct(map+reduceByKey+map) 去重
cogroup
当调用类型 (K,V)和(K,W)的数据上时,返回一个数据集(K, (Iterable,Iterable))
mapPartitonWithIndex
类似于mapPartitions,除此之外还会携带分区的索引值。
repartition
增加或减少分区。会产生shuffle。(多个分区到一个分区不会产生shuffle)
coalesce
coalesce常用来减少分区,第二个参数是减少分区的过程中是否产生shuffle。
true为产生shuffle,false不产生shuffle。默认是false。
如果coalesce设置的分区数比原来的RDD的分区数还多的话,第二个参数设置为false不会起作用,如果设置成true,效果和repartition一样。即repartition(numPartitjons) = coalesce(numPartitons,true)
groupByKey
作用在K,V格式的RDD上。根据Key进行分组。作用在 (K,V) ,返回(K, Iterable )。
zip
将两个RDD中的元素(KV格式/非KV格式)变成一个KV格式的RDD,两个RDD的个数必须相同。
zipWithIndex
该函数将RDD中的元素和这个元素在RDD中的索引号(从0开始)组合成(K,V)对。
行动算子操作
count
返回数据集中的元素数。会在结果计算完成后回收到Driver端。
take(n)
返回一个包含数据集前n个元素的集合。
first
first=take(1),返回数据集中的第一个元素。
foreach
循环遍历数据集中的每个元素,运行相应的逻辑
collect
将计算结果回收到Driver端
foreachPartiton
遍历的数据是每个partition的数据
countByKey
作用到K,V格式的RDD上,根据Key计数相同Key的数据集元素
reduce
根据聚合逻辑聚合数据集中的每个元素。