Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake(线段树+dp)

官方题解:

首先,我们计算每个蛋糕的体积: vi=π∗hi∗r2i
现在,考虑序列 v1,v2,v3,…,vn :问题的答案是这个序列中递增子序列的最大和。我们怎么样解决它?
首先去掉小数,我们可以定义一个新的数组  a1,a2,a3,…,an,ai=vi/π=hi∗r2i
们考虑 dpi是以 ai结束的序列和的最大值且 
 dpi=max(ai,maxj<i,aj≤aidp[j]+ai)
这个问题的答案就是: π∗maxi=1tondp[i]
现在,我们怎么计算 dpi=max(ai,maxj<i,aj≤aidp[j]+ai)?我们使用一个线段树,这个线段树有两种操作:1.将第i个数更改为v;2.找出1到i中最大的数。 
现在,我们将dp与线段树结合寻找答案。 
假设 a1,a2,a3,…,an已经排序好了。我们定义 bi是ai的位置。现在填充 dpi,我们找出区间 [1,bi]中最大的, 设为x,然后将线段树中  bi个位置设置成  ai+x 。问题的答案就是区间[1,n]中的最大值。 
时间复杂度: O(nlogn)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;

typedef __int64 LL;
const double PI=acos(-1.0);
const int INF=0x3f3f3f3f;
const int maxn=100005;
int n;
LL dp[3*maxn];

struct Cake{
	LL v;
	int id;
	inline bool operator<(const Cake&a) const{//注意排序
		return v<a.v||(v==a.v&&id>a.id);
	}
}cake[maxn];

struct segmentTree{
	int l;
	int r;
}node[3*maxn];

void PushUp(int rt){
	dp[rt]=max(dp[rt<<1],dp[rt<<1|1]);
}

void build(int rt,int l,int r){
	node[rt].l=l;
	node[rt].r=r;
	if(l==r) return ;
	int mid=(l+r)>>1;
	build(rt<<1,l,mid);
	build(rt<<1|1,mid+1,r);
}

void Update(int rt,int L,int R,int pos,LL val){
	if(L==pos&&R==pos){
		dp[rt]=val;
		return ;
	}
	int mid=(L+R)>>1;
	if(pos<=mid) Update(rt<<1,L,mid,pos,val);
	else Update(rt<<1|1,mid+1,R,pos,val);
	PushUp(rt);
}

LL Query(int rt,int L,int R,int l,int r){
	if(L>=l&&R<=r){
		return dp[rt];
	}
	LL res=0;
	int mid=(L+R)>>1;
	if(l<=mid) res=max(res,Query(rt<<1,L,mid,l,r));
	if(r>mid) res=max(res,Query(rt<<1|1,mid+1,R,l,r));
	return res;
}

int main(){
#ifndef ONLINE_JUDGE
	freopen("test.in","r",stdin);
	freopen("test.out","w",stdout);
#endif
	while(~scanf("%d",&n)){
		LL r,h;
		for(int i=1;i<=n;i++){
			scanf("%I64d%I64d",&r,&h);
			cake[i].v=r*r*h;
			cake[i].id=i;
		}
		memset(dp,0,sizeof(dp));
		sort(cake+1,cake+n+1);
		build(1,1,n);
		for(int i=1;i<=n;i++){
			int pos=cake[i].id;
			LL val=Query(1,1,n,1,pos)+cake[i].v;
			Update(1,1,n,pos,val);
		}
		LL ans=Query(1,1,n,1,n);
		printf("%.10lf\n",PI*(double)ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值