官方题解:
首先,我们计算每个蛋糕的体积: vi=π∗hi∗r2i
现在,考虑序列 v1,v2,v3,…,vn :问题的答案是这个序列中递增子序列的最大和。我们怎么样解决它?
首先去掉小数,我们可以定义一个新的数组 a1,a2,a3,…,an,ai=vi/π=hi∗r2i
们考虑 dpi是以 ai结束的序列和的最大值且
dpi=max(ai,maxj<i,aj≤aidp[j]+ai)
这个问题的答案就是: π∗maxi=1tondp[i]
现在,我们怎么计算 dpi=max(ai,maxj<i,aj≤aidp[j]+ai)?我们使用一个线段树,这个线段树有两种操作:1.将第i个数更改为v;2.找出1到i中最大的数。
现在,我们将dp与线段树结合寻找答案。
假设 a1,a2,a3,…,an已经排序好了。我们定义 bi是ai的位置。现在填充 dpi,我们找出区间 [1,bi]中最大的, 设为x,然后将线段树中 bi个位置设置成 ai+x 。问题的答案就是区间[1,n]中的最大值。
时间复杂度: O(nlogn)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef __int64 LL;
const double PI=acos(-1.0);
const int INF=0x3f3f3f3f;
const int maxn=100005;
int n;
LL dp[3*maxn];
struct Cake{
LL v;
int id;
inline bool operator<(const Cake&a) const{//注意排序
return v<a.v||(v==a.v&&id>a.id);
}
}cake[maxn];
struct segmentTree{
int l;
int r;
}node[3*maxn];
void PushUp(int rt){
dp[rt]=max(dp[rt<<1],dp[rt<<1|1]);
}
void build(int rt,int l,int r){
node[rt].l=l;
node[rt].r=r;
if(l==r) return ;
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
}
void Update(int rt,int L,int R,int pos,LL val){
if(L==pos&&R==pos){
dp[rt]=val;
return ;
}
int mid=(L+R)>>1;
if(pos<=mid) Update(rt<<1,L,mid,pos,val);
else Update(rt<<1|1,mid+1,R,pos,val);
PushUp(rt);
}
LL Query(int rt,int L,int R,int l,int r){
if(L>=l&&R<=r){
return dp[rt];
}
LL res=0;
int mid=(L+R)>>1;
if(l<=mid) res=max(res,Query(rt<<1,L,mid,l,r));
if(r>mid) res=max(res,Query(rt<<1|1,mid+1,R,l,r));
return res;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
#endif
while(~scanf("%d",&n)){
LL r,h;
for(int i=1;i<=n;i++){
scanf("%I64d%I64d",&r,&h);
cake[i].v=r*r*h;
cake[i].id=i;
}
memset(dp,0,sizeof(dp));
sort(cake+1,cake+n+1);
build(1,1,n);
for(int i=1;i<=n;i++){
int pos=cake[i].id;
LL val=Query(1,1,n,1,pos)+cake[i].v;
Update(1,1,n,pos,val);
}
LL ans=Query(1,1,n,1,n);
printf("%.10lf\n",PI*(double)ans);
}
return 0;
}