Java——方法 递归使用及练习

本文深入探讨了Java中的方法递归,从概念、执行过程到多个递归编程练习,包括数字打印、求和、阶乘、斐波那契数列、汉诺塔问题和青蛙跳台阶问题。强调了递归在解决特定问题时的重要性,同时提醒在适当情况下使用循环可能更为高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Java方法递归


1.递归的概念


一个方法在执行过程中调用自身, 就称为 “递归”.

递归相当于数学上的 “数学归纳法”, 有一个起始条件, 然后有一个递推公式.

递归的注意点:

在这里插入图片描述

1.程序调用自己

2.这个递归程序一定要有一个趋近于中止的条件.

3.核心:写递归程序的时候,需要自己来推导一个递推公式.


例:

我们求 N!

起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.

递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!

代码实现:


import java.util.Scanner;

 public static int fac(int n){
   
        if(n==1){
   
            return 1;
        }
        return n*fac(n-1);

    }

    public static void main5(String[] args){
   
        Scanner scanner = new Scanner(System.in);
        int N = scanner.nextInt();
        int ret = fac(N);
        System.out.println(ret);

    }

2.递归执行过程分析


  递归的程序的执行过程不太容易理解, 要想理解清楚递归, 必须先理解清楚 “方法的执行过程”, 尤其是 “方法执行结束之后, 回到调用位置继续往下执行”.

  下面我们通过一系列的代码练习来熟悉方法递归地使用.


3.练习题


练习一


题目要求


按顺序打印一个数字的每一位(例如 1234 打印出 1 2 3 4)

实现代码

public static void print(int n){
   
        if(n>9){
   
            print(n/10);
        }
        System.out.print(n
### Java递归方法练习题示例 #### 题目一:计算阶乘 编写一个名为`factorial`的方法来计算给定正整数n的阶乘。 ```java public class Factorial { public static int factorial(int n) { if (n <= 1) { return 1; } else { return n * factorial(n - 1); } } public static void main(String[] args) { System.out.println(factorial(5)); // 输出应为120 } } ``` 此程序定义了一个静态方法`factorial`用于求解阶乘[^1]。 #### 题目二:斐波那契序列 创建一个函数`fibonacci`接收参数n并返回第n项斐波那契数值。 ```java public class Fibonacci { public static int fibonacci(int n) { if (n == 0 || n == 1) { return n; } else { return fibonacci(n - 1) + fibonacci(n - 2); } } public static void main(String[] args) { for (int i = 0; i < 10; i++) { System.out.print(fibonacci(i) + " "); // 应打印前十个斐波那契数列成员 } } } ``` 上述代码实现了通过递归来获取指定位置上的斐波那契数字[^2]。 #### 题目三:汉诺塔游戏 实现解决经典汉诺塔问题的算法,即如何将一组盘子从起始柱移动到目标柱,在辅助柱的帮助下完成转移过程。 ```java public class HanoiTower { public static void moveDisks(int count, char source, char destination, char buffer) { if (count >= 1) { moveDisks(count - 1, source, buffer, destination); // 将上面N-1个圆盘移到中间杆上 System.out.printf("Move disk %d from rod %c to rod %c\n", count, source, destination); moveDisks(count - 1, buffer, destination, source); // 把剩下的N-1个圆盘由辅助杆移至目的杆 } } public static void main(String[] args) { moveDisks(3, 'A', 'C', 'B'); // 假设有三个不同大小的磁盘位于'A'柱上 } } ``` 这段代码展示了利用递归方式处理多步操作的经典案例——汉诺塔问题解决方案[^3]。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RAIN 7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值