bzoj4305 数学

1 篇文章 0 订阅

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=4305
大意:给长度为n的数列a,求有多少种数列b满足:
1、1<=b[i]<=m
2、 gcd(b[1],b[2],…,b[n])=d(d=1,2,3,…,m)
3、[ai≠bi]的个数为k

可以参考popoqqq blog

k个不同可以转为n-k个相同。
用cnt表示数列a中有多少个是d的倍数。
ans[d]=C(cnt,k)(m/d-1)^(cnt-k)(m/d)^(n-cnt)-ans[d*i].
(m/d-1)^(cnt-k)表示cnt中除去相同的可以选的方案
(m/d)^(n-cnt)表示除去cnt剩下的项可以选的个数

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mm=int(1e9)+7;
int n,m,K,ans[300050],a[300050],cnt;
int Pow[300050],Inv[300050];
inline int Mod(int x,int y)
{
    x+=y;
    if (x>=mm) x-=mm;
    return x;
}
inline int ksm(int x,int y)
{
    long long r=1;
    for (;y;y>>=1,x=1ll*x*x%mm)
        if (y&1) r=r*x%mm;
    return r;
}
inline int jc(int a,int b)
{
    return 1ll*Pow[a]*Inv[b]%mm*Inv[a-b]%mm;
}
int main()
{
    scanf("%d%d%d",&n,&m,&K);   K=n-K;
    int x;
    for (int i=1;i<=n;++i) {
        scanf("%d",&x);
        ++a[x];
    }
    Pow[0]=1;
    for (int i=1;i<=n;++i) Pow[i]=1ll*Pow[i-1]*i%mm;
    Inv[n]=ksm(Pow[n],mm-2);
    for (int i=n-1;i>=0;--i) Inv[i]=1ll*Inv[i+1]*(i+1)%mm;
    for (int i=m;i;--i) {
        cnt=0;
        for (int j=1;1ll*i*j<=m;++j)
            cnt+=a[i*j];
        if (cnt<K) continue;
        ans[i]=1ll*jc(cnt,K)*ksm(m/i-1,cnt-K)%mm*ksm(m/i,n-cnt)%mm;
    }
    for (int i=m;i;--i)
        for (int j=i+i;j<=m;j+=i) ans[i]=Mod(ans[i],mm-ans[j]);
    for (int i=1;i<m;++i) printf("%d ",ans[i]);
    printf("%d\n",ans[m]);
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值