动态规划 线性的三种类型(除了背包问题):
- 最长递增子序列
- 最长公共子序列
- 三角形最小路径和
题目:
思路:
从上到下,找到到每个点的最优路径即可。最优路径为左上或者右上点+这个点自身的数值。
图解:
dp状态和转移方程:
从顶点出发到某个点的最小路径和只和这个点的左上右上两个点的状态有关。而且这个状态的得到与左上右上两个点是怎么来的无关。
方法一:
这个方法和上面一样,但是是在三角形原地进行路径权重的累加。会破坏原来的三角形的数据。(在做题前先问清楚能不能破坏,一般是不能的)
时间复杂度O(n)
空间复杂度O(1)
class Solution {
public:
int minimumTotal(std::vector<std::vector<int>>& triangle) {
for (int i = 0; i < triangle.size(); ++i)
{
for (int j = 0; j < triangle[i].size(); ++j)
{
if (i - 1 >= 0)//有上边
{
if (j - 1 >= 0 && j <= triangle[i - 1].size() - 1)//不在边边 左上和右上都有
triangle[i][j] += std::min(triangle[i - 1][j - 1], triangle[i - 1][j]);
else if (j - 1 >= 0)//只有左上
triangle[i][j] += triangle[i - 1][j - 1];
else //只有右上
triangle[i][j] += triangle[i - 1][j];
}
}
}
int result = INT_MAX;
for (const auto& x : triangle[triangle.size() - 1])
result = std::min(result, x);
return result;
}
};
方法二:
这个方法是优化过的存储方式。如果要求不能破坏数组,第一时间想到的是可以直接开辟一个三角形一样的数组用来存放,空间复杂度O(n^2)。但是可以利用滚动数组减少空间复杂度,只用一个长度为n的数组存上一层的累加结果,因为当层的选择只与上一层的状态有关。注意每层的计算必须从后往前算,不然会在某个状态被需要时就被提前覆盖掉。
时间复杂度O(n)
空间复杂度O(n)
class Solution {
public:
int minimumTotal(std::vector<std::vector<int>>& triangle) {
std::vector<int> temp(triangle.back().size());
for (int i = 0; i < triangle.size(); ++i)
{
for (int j = triangle[i].size() - 1; j >= 0; --j)
{
if (i - 1 >= 0)//有上边
{
if (j - 1 >= 0 && j <= triangle[i - 1].size() - 1)//不在边边 左上和右上都有
temp[j] = triangle[i][j] + std::min(temp[j - 1], temp[j]);
else if (j - 1 >= 0)//只有左上
temp[j] = triangle[i][j] + temp[j - 1];
else //只有右上
temp[j] = triangle[i][j] + temp[j];
}
else
temp[j] = triangle[i][j];//第一个
}
}
int result = INT_MAX;
for (const auto& x : temp)
result = std::min(result, x);
return result;
}
};