自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 机器学习面试笔记

机器学习面试笔记 集成学习 Boosting,Bagging,Stacking [https://xijunlee.github.io/2017/06/03/%E9%9B%86%E6%88%90%E5%AD%A6%E4%B9%A0%E6%80%BB%E7%BB%93/] Boosting: AdaBoost 在不改变训练数据的情况下,通过在迭代训练弱学习器中,不断提升被错分类样本的权重(也就是使被错分的样本在下一轮训练时得到更多的重视),不断减少正确分类样本的权重。最后通过加权线性组合M个弱分类器得到最终的

2022-04-23 00:17:10 1222

原创 深度学习的过程(监督学习)

深度学习的过程(监督学习)分类问题回归问题 分类问题 1、 数据集分类: 1.1首先把数据集分成X集和Y集。X集为数据,Y集为对应的标签。 如:mnist,X集为60000张,像素为28*28的图片。 Y集为一个1*60000的一维数组,[8,9,0,1,2,3,……]。 1.2我们需要把数据集的一部分作为训练集,一部分作为测试集。通常拿80%的数据做数据集,20%的数据做测试集。(可以在原始数据里分,也可以用代码去分) from sklearn.model_selection import train_t

2020-12-16 10:35:14 2079

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除