洛谷P2822 组合数问题

题目传送门

题目描述

组合数C(n,m)表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3)三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。 根据组合数的定义,我们可以给出计算组合数的一般公式:C(n,m)=n! /m!(nm)!其中n!=1×2××n特别地,定义0!=1

小葱想知道如果给定n,mk对于所有的0in,0jmin(i,m),有多少对(i,j)满足C(i,j)k的倍数。

小葱进行了t次询问;

ps:由于我比较菜,所以不知道如何将组合符号表示出来。

对于全部的测试点,保证 0n,m2×1031t104

思路:

我们先看一下数据:

1                                  C(0,0)

1 1                               C(1,0)   C(1,1) 

1 2 1                            C(2,0)   C(2,1)  C(2,2) 

1 3  3 1                        C(3,0)   C(3,1)  C(3,2) C(3,3)   

...                                  ...

看到这,我们不由得会想到杨辉三角,因为所以C(i,j)的值就是第i行第j列;然后我们只需要对他进行预处理,再%上k就行了;

但是需要询问多次,这里我们会想到前缀和,利用二维前缀和,如果%k=0,那么就是1,反之则为0;

具体代码如下:

代码(点开查看)
#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
int c[2010][2010], sum[2010][2010];
int main()
{
	int t, k;
	cin >> t >> k;
	c[0][0] = 1;
	int x;
	for (int i = 1; i <= 2000; i++)
	{
		c[i][0] = c[i][i] = 1;//杨辉三角
		for (int j = 1; j < i; j++)
		{
			c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % k;
			if (c[i][j] == 0)//如果是k的倍数,那么就让sum=1;
			{
				sum[i][j] = 1;
			}
		}
	}
	for (int i = 1; i <= 2000; i++)
	{
		for (int j = 1; j <= 2000; j++)
		{
			sum[i][j] += sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];//前缀和,表示i,j前符合条件的个数
		}
	}
	while (t--)
	{
		int n, m;
		cin >> n >> m;
		cout << sum[n][m] << endl;
	}
	return 0;
}

完结!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值