题目描述
组合数C(n,m)表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3)三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。 根据组合数的定义,我们可以给出计算组合数的一般公式:C(n,m)=n! /m!(n−m)!其中n!=1×2×⋯×n特别地,定义0!=1。
小葱想知道如果给定n,m和k对于所有的0≤i≤n,0≤j≤min(i,m),有多少对(i,j)满足C(i,j)是k的倍数。
小葱进行了t次询问;
ps:由于我比较菜,所以不知道如何将组合符号表示出来。
对于全部的测试点,保证 0≤n,m≤2×103,1≤t≤104。
思路:
我们先看一下数据:
1 C(0,0)
1 1 C(1,0) C(1,1)
1 2 1 C(2,0) C(2,1) C(2,2)
1 3 3 1 C(3,0) C(3,1) C(3,2) C(3,3)
... ...
看到这,我们不由得会想到杨辉三角,因为所以C(i,j)的值就是第i行第j列;然后我们只需要对他进行预处理,再%上k就行了;
但是需要询问多次,这里我们会想到前缀和,利用二维前缀和,如果%k=0,那么就是1,反之则为0;
具体代码如下:
代码(点开查看)
#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
int c[2010][2010], sum[2010][2010];
int main()
{
int t, k;
cin >> t >> k;
c[0][0] = 1;
int x;
for (int i = 1; i <= 2000; i++)
{
c[i][0] = c[i][i] = 1;//杨辉三角
for (int j = 1; j < i; j++)
{
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % k;
if (c[i][j] == 0)//如果是k的倍数,那么就让sum=1;
{
sum[i][j] = 1;
}
}
}
for (int i = 1; i <= 2000; i++)
{
for (int j = 1; j <= 2000; j++)
{
sum[i][j] += sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];//前缀和,表示i,j前符合条件的个数
}
}
while (t--)
{
int n, m;
cin >> n >> m;
cout << sum[n][m] << endl;
}
return 0;
}
完结!