人工智障
...
NGC 604
美妙人生的关键在于迷上什么
展开
-
神经网络的几种参数更新方法
本文总结自《深度学习入门:基于Python的理论与实现》一书,对于后两个方法,笔者还不太理解,所以仅仅介绍概念,或许以后会添加新的理解原创 2020-04-26 12:33:40 · 3209 阅读 · 0 评论 -
What is Back Propaganda?
反向传播用来计算导数,但这个不是反向传播的特性,这个导数怎么算是要自己来写的!把每一层的结点的导数计算公式封装在结点内部后,再来使用反向传播,反向传播的特性就是:链式法则,或者说反向传播是符合链式法则的,有了这个前提,我们才可以进行导数的反向传播。所以说,反向传播说白了就是: 把一个复合函数拆分为组成它的子函数,逐个求导,然后导数依次往前面的层传递,叫反向是因为这个过程在网络里是从后往前的!...原创 2020-04-08 18:57:28 · 374 阅读 · 0 评论 -
理解CNN神经网络
首先构建好用于学习的模型,也就是各个层用什么激活函数、输出层的如softmax函数、各层神经元的个数、损失函数等等。然后使用训练数据集来不断的调整模型的参数(学习)。具体怎么做的?首先设定一个初始参数。然后开始学习,计算第一次误差。然后调整参数,再次学习,计算误差。以此循环。最后误差会达到最小值。学习完毕。计算误差需要用到损失函数,损失函数实际上就是根据输出数据和预期数据计算模型的误...原创 2020-03-21 10:09:19 · 251 阅读 · 0 评论 -
通俗易懂的讲解K-means
对集合中每一个小弟,计算与每一个大佬的距离,离哪个大佬距离近,就跟定哪个大佬转载 2020-05-03 12:20:23 · 1199 阅读 · 0 评论