机器学习
文章平均质量分 95
近光
这个作者很懒,什么都没留下…
展开
-
机器学习中条件熵的理解
记一下自己的机器学习中一些难以理解的概念。首先看条件熵的公式定义:X给定条件下Y的条件概率分布的熵对X的数学期望几点理解:X和Y并不一定是独立分布给定条件下:这里的给定条件下是指,如果X确定的话,YY的条件概率分布的熵对X的数学期望,并不指X确定为某一特定的值数学期望:条件熵是一个期望,也就是X的所有可能值都要取到下面举一个栗子:比如天气冷暖和我穿衣服多少是有联系的。假设X表示...原创 2018-10-16 10:10:16 · 911 阅读 · 0 评论 -
对于EM算法的理解,看这一篇就够了
EM算法实际上就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法。其中对EM有两种理解,第一种是通俗的简单理解,另外一种对应的是李航的《统计学习方法》中的解释通俗理解极大似然估计假设现在有一个盒子,其中白球有99个,黑球有1个。那么我们很清楚的就可以得出我们从盒子里面摸一个球出来,摸到白球的概率是99/100,摸到黑球的概率是1/100。这就叫做先验概率。现在假设盒子中有...原创 2018-10-30 15:41:26 · 3889 阅读 · 0 评论