TOJ 1701: Face The Right Way

1701: Face The Right Way

Time Limit(Common/Java):2000MS/20000MS     Memory Limit:65536KByte
Total Submit: 24            Accepted:9

Description

Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ KN) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

Input

Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

Output

Line 1: Two space-separated integers: K and M

Sample Input

7
B
B
F
B
F
B
B

Sample Output

3 3

Hint

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)

Source

USACO March 2007


分析:枚举所有的K,求出对应的m,然后取最小的就行了。时间复杂度取决于求m的复杂度。对每一个k,从第1个位置开始,翻转所有反向的位置,然后用一个队列q记录对当前位置有影响的翻转(比如在位置1翻转了,那么直到位置k都会有影响),队列q的长度就是当前位置被翻转的次数,这样可以在O(n)时间内求出每一个m。总时间复杂度为O(k * n) = O(n^2)。

#include 
     
     
      
      
#include 
      
      
       
       
#include 
       
       
        
        
#include 
        
        
         
         
#include 
         
         
           #include 
           #include 
           
             #include 
            
              #include 
             
               #include 
              
                #include 
               
                 #include 
                
                  #include 
                 
                   #include 
                  
                    #include 
                   
                     #define mp make_pair using namespace std; typedef unsigned int ui; typedef long long ll; typedef unsigned long long ull; typedef pair 
                    
                      pii; typedef vector 
                     
                       vi; typedef vi::iterator vi_it; typedef map 
                      
                        mii; typedef priority_queue 
                       
                         pqi; typedef priority_queue 
                        
                          , greater 
                         
                           > rpqi; const int MAX_N = 5000 + 2; const char BF[] = "BF"; char cow[MAX_N]; int q[MAX_N]; int main(int argc, char *argv[]) { // freopen("D:\\in.txt", "r", stdin); int n, i; cin >> n; //k = 1 and m = the number of Bs is always feasible int mink = 1, minm = 0; for (i = 1; i <= n; ++i) { scanf("\n%c", cow + i); minm += (cow[i] == 'B'); } //for each k, calculate the corresponding m //the queue q saves all the change that affects the current position //so the size of q equals the number of changes made to the current position for (int k = 2; k <= n; ++k) { int cnt = 0; int head = 0, tail = 0; for (i = 1; i <= n - k + 1; ++i) { if (cow[i] == BF[(tail - head) % 2]) { if (++cnt >= minm) { break; } else { q[tail++] = i; } } if (tail > head && q[head] + k - 1 == i) { ++head; } } if (i > n - k + 1) { for (; i <= n; ++i) { if (cow[i] == BF[(tail - head) % 2]) { break; } if (tail > head && q[head] + k - 1 == i) { ++head; } } if (i > n) { minm = cnt; mink = k; } } } cout << mink << " " << minm << endl; return 0; } 
                          
                         
                        
                       
                      
                     
                    
                   
                  
                 
                
               
              
             
            
         
        
        
       
       
      
      
     
     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值