TOJ 1588 Cornfields -- 二维RMQ

题目链接:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1588

分析:二维RMQ,和一维的区别不大,询问的时候把一个大的矩形划分成4个小矩形。

#include 
   
   
    
    
#include 
    
    
     
     
#include 
     
     
      
      
#include 
      
      
       
       
#include 
       
       
         #include 
         #include 
         
           #include 
          
            #include 
           
             #include 
            
              #include 
             
               #include 
              
                #include 
               
                 #include 
                
                  #include 
                 
                   #include 
                  
                    #define mp make_pair #define X first #define Y second #define MEMSET(a, b) memset(a, b, sizeof(a)) using namespace std; typedef unsigned int ui; typedef long long ll; typedef unsigned long long ull; typedef pair 
                   
                     pii; typedef vector 
                    
                      vi; typedef vi::iterator vi_it; typedef map 
                     
                       mii; typedef priority_queue 
                      
                        pqi; typedef priority_queue 
                       
                         , greater 
                        
                          > rpqi; typedef priority_queue 
                         
                           pqp; typedef priority_queue 
                          
                            , greater 
                           
                             > rpqp; const int MAX_N = 250 + 2; int dp[MAX_N][MAX_N][8][8][2]; void make_rmq(int n) { int r, c, i, j; for (i = 0; (1 << i) <= n; ++i) { for (j = 0; (1 << j) <= n; ++j) { if (!i && !j) { continue; } for (r = 1; r + (1 << i) - 1 <= n; ++r) { for (c = 1; c + (1 << j) - 1 <= n; ++c) { if (i == 0) { dp[r][c][i][j][0] = min(dp[r][c][i][j - 1][0], dp[r][c + (1 << (j - 1))][i][j - 1][0]); dp[r][c][i][j][1] = max(dp[r][c][i][j - 1][1], dp[r][c + (1 << (j - 1))][i][j - 1][1]); } else { dp[r][c][i][j][0] = min(dp[r][c][i - 1][j][0], dp[r + (1 << (i - 1))][c][i - 1][j][0]); dp[r][c][i][j][1] = max(dp[r][c][i - 1][j][1], dp[r + (1 << (i - 1))][c][i - 1][j][1]); } } } } } } int query(int r1, int c1, int r2, int c2) { int k1 = (int)(log((double)(r2 - r1 + 1)) / log(2.0)); int k2 = (int)(log((double)(c2 - c1 + 1)) / log(2.0)); int minv = min(min(dp[r1][c1][k1][k2][0], dp[r1][c2 - (1 << k2) + 1][k1][k2][0]), min(dp[r2 - (1 << k1) + 1][c1][k1][k2][0], dp[r2 - (1 << k1) + 1][c2 - (1 << k2) + 1][k1][k2][0])); int maxv = max(max(dp[r1][c1][k1][k2][1], dp[r1][c2 - (1 << k2) + 1][k1][k2][1]), max(dp[r2 - (1 << k1) + 1][c1][k1][k2][1], dp[r2 - (1 << k1) + 1][c2 - (1 << k2) + 1][k1][k2][1])); return maxv - minv; } int main(int argc, char *argv[]) { // freopen("D:\\in.txt", "r", stdin); int n, b, k, i, j; cin >> n >> b >> k; for (i = 1; i <= n; ++i) { for (j = 1; j <= n; ++j) { cin >> dp[i][j][0][0][0]; dp[i][j][0][0][1] = dp[i][j][0][0][0]; } } make_rmq(n); while (k--) { int x, y; cin >> x >> y; cout << query(x, y, x + b - 1, y + b - 1) << endl; } return 0; } 
                            
                           
                          
                         
                        
                       
                      
                     
                    
                   
                  
                 
                
               
              
             
            
           
          
       
      
      
     
     
    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>