[机器学习实战] 线性模型与非线性模型的区别

本文探讨了机器学习中线性模型和非线性模型的区别。线性模型强调参数项为常数或特征乘积的加和,如线性回归,即使涉及特征的平方或更高次幂。非线性模型则因其参数的非线性特性,能更好地拟合复杂曲线,如多项式回归。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习的回归问题中,线性模型和非线性模型都可以去对曲线进行建模,那么线性模型和非线性模型有什么区别呢?

其实,线性模型和非线性模型的区别并不在于能不能去拟合曲线。下面我们来详细介绍一下它们两个的区别。

线性回归的等式

线性回归需要一个线性的模型。这到底意味着什么呢?

一个模型如果是线性的,就意味着它的参数项要么是常数,要么是原参数和要预测的特征之间的乘积加和就是我们要预测的值。

Response = constant + parameter * predictior1 + ... + parameter * predictior2

下是个典型的线性模型:

Y=b+w1x1+w2x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值