题目来源:674 https://leetcode.com/problems/palindromic-substrings/description/
动态规划基础训练。
647. Palindromic Substrings
题目大意
给定一个字符串,求出该字符串包含的所有回文子串的个数。
Example 1:
Input: “abc”
Output: 3
Explanation: Three palindromic strings: “a”, “b”, “c”.Example 2:
Input: “aaa”
Output: 6
Explanation: Six palindromic strings: “a”, “a”, “a”, “aa”, “aa”, “aaa”.
思路
解这题之前先来复习一下两道相关的题:求最长回文子串
和最长回文子序列
。
先区别一下这两个概念:子串和子序列。
子串:XiXi+1Xi+2…Xj-1Xj,为原串的某一连续部分。
子序列:可以为原串的某一不连续部分。
例:
原串:todayisasunnyday
子串:isasunn
子序列:odand
相关回顾:最长回文子串
和最长公共子串
本质一致,只需将原串作为X串,原串逆过来作为Y串,进行比较就可以了。
状态转移式:
// x为原字符串,y为原字符串逆置得到的串,f[i][j]表示从x[i]到y[j]之间的最长回文子序列的长度
init:f[i][i] = 1
f[i][j] = f[i-1][j-1] ,x[i]=y[j],i!=j
f[i][j] = 0 ,x[i]!=y[j],i!=j
result:max{f[i][j]}
相关回顾:最长回文子序列
《算法概论》P179的习题Ex6.7
状态转移式:
// str为原字符串,f[i][j]表示从str[i]到str[j]之间的最长回文子序列的长度
init:f[i][i] = 1
f[i][j] = f[i+1][j-1] + 2 ,str[i]=str[j],i!=j
f[i][j] = max{f[i+1][j], f[i][j-1]} ,str[i]!=str[j],i!=j
result:max{f[i][j]}
本题
状态转移式:
// str为原字符串,(bool)isPal[i][j]表示从str[i]到str[j]是否是回文
init:isPal[i][i] = true
isPal[i][j] = f[i+1][j-1] ,str[i]=str[j],i!=j,i+1<j-1
isPal[i][j] = true ,str[i]=str[j],i!=j,i+1>j-1
解题代码
class Solution {
public:
int countSubstrings(string s) {
int size = s.length();
if (size <= 1) return 1;
bool isPal[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
isPal[i][j] = false;
}
}
for (int i = 0; i < size; i++) isPal[i][i] = true;
int count = size;
for (int j = 0; j < size; j++) {
for (int i = 0; i < j; i++) {
if (s[i] == s[j] && (isPal[i+1][j-1] || i+1 >= j-1) ) {
isPal[i][j] = true;
count++;
}
}
}
return count;
}
};
复杂度
O(n^2)