作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处
首先给出官网截图:
结合网友们给出的信息得知tensorflow2的安装不用加 “-gpu”标识,即可支持gpu和cpu,宿主机不支持gpu的自动切为cpu支持。
官网另外一张截图验证了结论:
但是。。。。
花费两个小时实测,安装了tensorflow2.0.0后 tf.test.is_gpu_available() 返回false,安装了tensorflow-gpu==2.0.0后返回true
结论:还是老老实实的该加 “-gpu”标识了就加上吧,别给自己找麻烦。
最后附上gpu和cpu测试效果的脚本:
import tensorflow as tf
import timeit
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 代码用于忽略级别 2 及以下的消息(级别 1 是提示,级别 2 是警告,级别 3 是错误)
with tf.device('/cpu:0'):
cpu_a = tf.random.normal([10000, 1000])
cpu_b = tf.random.normal([1000, 2000])
print(cpu_a.device, cpu_b.device)
with tf.device('/gpu:0'):
gpu_a = tf.random.normal([10000, 1000])
gpu_b = tf.random.normal([1000, 2000])
print(gpu_a.device, gpu_b.device)
def cpu_run():
with tf.device('/cpu:0'):
c = tf.matmul(cpu_a, cpu_b)
return c
def gpu_run():
with tf.device('/gpu:0'):
c = tf.matmul(gpu_a, gpu_b)
return c
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('warmup:', cpu_time, gpu_time)
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('run time:', cpu_time, gpu_time)
【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】