小技巧:用画图工具找图像ROI区域坐标用于数字图像处理

本文介绍了如何利用画图工具确定图像中感兴趣区域(ROI)的坐标,以便于在OpenCV中进行精确截图。通过将图像拖入画图软件,可以获取坐标并转化为ROI表达式,如`image[310:375,391:443]`。之后,将截图转换为灰度图并展示。这个方法对于不熟悉图像坐标系统的初学者非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处


当我们想截图某个图像中的某个ROI区域的时候不知道ROI区域的坐标,可以借助画图工具来找坐标。比如李娜的眼睛:

        我们把李娜拖动到画图工具,此时图像会处于图像的左上角,左上角的坐标为(0,0),和我们opencv读取图像的坐标系方向一致。

        鼠标放到红色的点可以看到画图工具左下角会显示鼠标位置的坐标(391,310),同理我们可以得到眼睛右下角蓝色点的坐标(443,375)

        我们习惯的坐标表示 是 先 x 横坐标,再 y 纵坐标。在图像处理中,这种惯性思维经常情况下是错误的。因为在计算机中,图像是以矩阵的形式保存的,先行后列。所以,一张 宽×高×颜色通道=480×256×3 的图片会保存在一个 256×480×3 的三维张量中。图像处理时也是按照这种思想进行计算的(其中就包括 OpenCV 下的图像处理),即 高×宽×颜色通道。那么我们可以把上边的两个坐标位置整理成ROI区域  image[310:375, 391:443]

代码:

import cv2

img = cv2.imread('lena.jpg')[310:375, 391:443]
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
print("**********",type(gray))
print("**********",gray.shape)

cv2.imshow("img",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

效果:

【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值