Let be the class of expressions generated by
1. The rational numbers and the two real numbers and ,
2. The variable ,
3. The operations of addition, multiplication, and composition, and
4. The sine, exponential, and absolute value functions.
Then if , the predicate "" is recursively undecidable.
REFERENCES:
Caviness, B. F. "On Canonical Forms and Simplification." J. Assoc. Comp. Mach. 17, 385-396, 1970.
Davenport, J. H. J. Symb. Comput. 34, 259, 2002.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Richardson, D. "Some Unsolvable Problems Involving Elementary Functions of a Real Variable." J. Symbolic Logic 33, 514-520, 1968.
Richardson, D. J. Symb. Comput. 24, 627, 1997.
Richardson, D. In Computability and Complexity in Analysis (Ed. J. Blanck, V. Brattka, and P. Hertling). Berlin: Springer-Verlag, 2000.
Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2005. http://www.mathematicaguidebooks.org/.
CITE THIS AS:
Weisstein, Eric W. "Richardson's Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RichardsonsTheorem.html