Richardson's Theorem

本文探讨了理查森定理,该定理指出在特定类型表达式的集合中,包含基本数学运算及某些特殊函数的可递归判定性问题实际上是不可解的。这些表达式包括有理数、实数、变量、加法、乘法、函数复合、正弦、指数函数和绝对值等元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Let R be the class of expressions generated by

1. The rational numbers and the two real numbers pi and ln2,

2. The variable x,

3. The operations of addition, multiplication, and composition, and

4. The sine, exponential, and absolute value functions.

Then if E in R, the predicate "E=0" is recursively undecidable.

REFERENCES:

Caviness, B. F. "On Canonical Forms and Simplification." J. Assoc. Comp. Mach. 17, 385-396, 1970.

Davenport, J. H. J. Symb. Comput. 34, 259, 2002.

Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.

Richardson, D. "Some Unsolvable Problems Involving Elementary Functions of a Real Variable." J. Symbolic Logic 33, 514-520, 1968.

Richardson, D. J. Symb. Comput. 24, 627, 1997.

Richardson, D. In Computability and Complexity in Analysis (Ed. J. Blanck, V. Brattka, and P. Hertling). Berlin: Springer-Verlag, 2000.

Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2005. http://www.mathematicaguidebooks.org/.




CITE THIS AS:

Weisstein, Eric W. "Richardson's Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RichardsonsTheorem.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值